mirror of
				https://github.com/nmvdw/HITs-Examples
				synced 2025-11-04 07:33:51 +01:00 
			
		
		
		
	Added simplified proof of extensionality
This commit is contained in:
		
							
								
								
									
										74
									
								
								FiniteSets/fsets/extensionality_alt.v
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								FiniteSets/fsets/extensionality_alt.v
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,74 @@
 | 
			
		||||
(** Extensionality of the FSets *)
 | 
			
		||||
Require Import HoTT HitTactics.
 | 
			
		||||
Require Import representations.definition fsets.operations.
 | 
			
		||||
 | 
			
		||||
Section ext.
 | 
			
		||||
  Context {A : Type}.
 | 
			
		||||
  Context `{Univalence}.
 | 
			
		||||
 | 
			
		||||
  Lemma equiv_subset_l : forall (X Y : FSet A), Y ∪ X = X -> forall a, a ∈ Y -> a ∈ X.
 | 
			
		||||
  Proof.
 | 
			
		||||
    intros X Y H1 a Ya.
 | 
			
		||||
    rewrite <- H1.
 | 
			
		||||
    apply (tr(inl Ya)).
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
  Lemma equiv_subset_r : forall (X Y : FSet A), (forall a, a ∈ Y -> a ∈ X) -> Y ∪ X = X.
 | 
			
		||||
  Proof.
 | 
			
		||||
    intros X.
 | 
			
		||||
    hinduction ; try (intros ; apply path_forall ; intro ; apply path_ishprop).
 | 
			
		||||
    - intros.
 | 
			
		||||
      apply nl.
 | 
			
		||||
    - intros b sub.
 | 
			
		||||
      specialize (sub b (tr idpath)).
 | 
			
		||||
      revert sub.
 | 
			
		||||
      hinduction X ; try (intros ; apply path_forall ; intro ; apply path_ishprop).
 | 
			
		||||
      * contradiction.
 | 
			
		||||
      * intros.
 | 
			
		||||
        strip_truncations.
 | 
			
		||||
        rewrite sub.
 | 
			
		||||
        apply union_idem.
 | 
			
		||||
      * intros X Y subX subY mem.
 | 
			
		||||
        strip_truncations.
 | 
			
		||||
        destruct mem.
 | 
			
		||||
        ** rewrite assoc.
 | 
			
		||||
           rewrite (subX t).
 | 
			
		||||
           reflexivity.
 | 
			
		||||
        ** rewrite (comm X).
 | 
			
		||||
           rewrite assoc.
 | 
			
		||||
           rewrite (subY t).
 | 
			
		||||
           reflexivity.
 | 
			
		||||
    - intros Y1 Y2 H1 H2 H3.
 | 
			
		||||
      rewrite <- assoc.
 | 
			
		||||
      rewrite (H2 (fun a HY => H3 a (tr(inr HY)))).
 | 
			
		||||
      rewrite (H1 (fun a HY => H3 a (tr(inl HY)))).
 | 
			
		||||
      reflexivity.
 | 
			
		||||
  Defined.        
 | 
			
		||||
 | 
			
		||||
  Lemma eq_subset' (X Y : FSet A) : X = Y <~> (Y ∪ X = X) * (X ∪ Y = Y).
 | 
			
		||||
  Proof.
 | 
			
		||||
    unshelve eapply BuildEquiv.
 | 
			
		||||
    { intro H'. rewrite H'. split; apply union_idem. }
 | 
			
		||||
    unshelve esplit.
 | 
			
		||||
    { intros [H1 H2]. etransitivity. apply H1^.
 | 
			
		||||
      rewrite comm. apply H2. }
 | 
			
		||||
    intro; apply path_prod; apply set_path2.
 | 
			
		||||
    all: intro; apply set_path2.
 | 
			
		||||
  Defined.
 | 
			
		||||
  
 | 
			
		||||
  Theorem fset_ext (X Y : FSet A) :
 | 
			
		||||
    X = Y <~> (forall (a : A), a ∈ X = a ∈ Y).
 | 
			
		||||
  Proof.
 | 
			
		||||
    refine (@equiv_compose' _ _ _ _ _) ; [ | apply eq_subset' ].
 | 
			
		||||
    eapply equiv_iff_hprop_uncurried ; split.
 | 
			
		||||
    - intros [H1 H2 a].
 | 
			
		||||
      apply path_iff_hprop ; apply equiv_subset_l ; assumption.
 | 
			
		||||
    - intros H1.
 | 
			
		||||
      split ; apply equiv_subset_r.
 | 
			
		||||
      * intros a Ya.
 | 
			
		||||
        rewrite (H1 a) ; assumption.
 | 
			
		||||
      * intros a Xa.
 | 
			
		||||
        rewrite <- (H1 a) ; assumption.
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
End ext.
 | 
			
		||||
		Reference in New Issue
	
	Block a user