mirror of https://github.com/nmvdw/HITs-Examples
Move aux lemmas into the plumbing file
This commit is contained in:
parent
5afb85b000
commit
c23ea61353
|
@ -1,6 +1,7 @@
|
||||||
-R . "" COQC = hoqc COQDEP = hoqdep
|
-R . "" COQC = hoqc COQDEP = hoqdep
|
||||||
-R ../prelude ""
|
-R ../prelude ""
|
||||||
notation.v
|
notation.v
|
||||||
|
plumbing.v
|
||||||
lattice.v
|
lattice.v
|
||||||
disjunction.v
|
disjunction.v
|
||||||
representations/bad.v
|
representations/bad.v
|
||||||
|
|
|
@ -0,0 +1,16 @@
|
||||||
|
Require Import HoTT.
|
||||||
|
|
||||||
|
(* Lemmas from this file do not belong in this project. *)
|
||||||
|
(* Some of them should probably be in the HoTT library? *)
|
||||||
|
|
||||||
|
Lemma ap_inl_path_sum_inl {A B} (x y : A) (p : inl x = inl y) :
|
||||||
|
ap inl (path_sum_inl B p) = p.
|
||||||
|
Proof.
|
||||||
|
transitivity (@path_sum _ B (inl x) (inl y) (path_sum_inl B p));
|
||||||
|
[ | apply (eisretr_path_sum _) ].
|
||||||
|
destruct (path_sum_inl B p).
|
||||||
|
reflexivity.
|
||||||
|
Defined.
|
||||||
|
Lemma ap_equiv {A B} (f : A <~> B) {x y : A} (p : x = y) :
|
||||||
|
ap (f^-1 o f) p = eissect f x @ p @ (eissect f y)^.
|
||||||
|
Proof. destruct p. hott_simpl. Defined.
|
|
@ -1,5 +1,5 @@
|
||||||
(* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *)
|
(* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *)
|
||||||
Require Import HoTT HitTactics.
|
Require Import HoTT HitTactics plumbing.
|
||||||
Require Import Sub notation variations.k_finite.
|
Require Import Sub notation variations.k_finite.
|
||||||
Require Import fsets.properties.
|
Require Import fsets.properties.
|
||||||
|
|
||||||
|
@ -150,21 +150,6 @@ Section empty.
|
||||||
Defined.
|
Defined.
|
||||||
End empty.
|
End empty.
|
||||||
|
|
||||||
|
|
||||||
(* TODO: This should go into the HoTT library or in some other places *)
|
|
||||||
Lemma ap_inl_path_sum_inl {A B} (x y : A) (p : inl x = inl y) :
|
|
||||||
ap inl (path_sum_inl B p) = p.
|
|
||||||
Proof.
|
|
||||||
transitivity (@path_sum _ B (inl x) (inl y) (path_sum_inl B p));
|
|
||||||
[ | apply (eisretr_path_sum _) ].
|
|
||||||
destruct (path_sum_inl B p).
|
|
||||||
reflexivity.
|
|
||||||
Defined.
|
|
||||||
Lemma ap_equiv {A B} (f : A <~> B) {x y : A} (p : x = y) :
|
|
||||||
ap (f^-1 o f) p = eissect f x @ p @ (eissect f y)^.
|
|
||||||
Proof. destruct p. hott_simpl. Defined.
|
|
||||||
(* END TODO *)
|
|
||||||
|
|
||||||
Section split.
|
Section split.
|
||||||
Context `{Univalence}.
|
Context `{Univalence}.
|
||||||
Variable (A : Type).
|
Variable (A : Type).
|
||||||
|
|
Loading…
Reference in New Issue