Move aux lemmas into the plumbing file

This commit is contained in:
Dan Frumin 2017-08-24 16:50:11 +02:00
parent 5afb85b000
commit c23ea61353
3 changed files with 18 additions and 16 deletions

View File

@ -1,6 +1,7 @@
-R . "" COQC = hoqc COQDEP = hoqdep -R . "" COQC = hoqc COQDEP = hoqdep
-R ../prelude "" -R ../prelude ""
notation.v notation.v
plumbing.v
lattice.v lattice.v
disjunction.v disjunction.v
representations/bad.v representations/bad.v

16
FiniteSets/plumbing.v Normal file
View File

@ -0,0 +1,16 @@
Require Import HoTT.
(* Lemmas from this file do not belong in this project. *)
(* Some of them should probably be in the HoTT library? *)
Lemma ap_inl_path_sum_inl {A B} (x y : A) (p : inl x = inl y) :
ap inl (path_sum_inl B p) = p.
Proof.
transitivity (@path_sum _ B (inl x) (inl y) (path_sum_inl B p));
[ | apply (eisretr_path_sum _) ].
destruct (path_sum_inl B p).
reflexivity.
Defined.
Lemma ap_equiv {A B} (f : A <~> B) {x y : A} (p : x = y) :
ap (f^-1 o f) p = eissect f x @ p @ (eissect f y)^.
Proof. destruct p. hott_simpl. Defined.

View File

@ -1,5 +1,5 @@
(* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *) (* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *)
Require Import HoTT HitTactics. Require Import HoTT HitTactics plumbing.
Require Import Sub notation variations.k_finite. Require Import Sub notation variations.k_finite.
Require Import fsets.properties. Require Import fsets.properties.
@ -150,21 +150,6 @@ Section empty.
Defined. Defined.
End empty. End empty.
(* TODO: This should go into the HoTT library or in some other places *)
Lemma ap_inl_path_sum_inl {A B} (x y : A) (p : inl x = inl y) :
ap inl (path_sum_inl B p) = p.
Proof.
transitivity (@path_sum _ B (inl x) (inl y) (path_sum_inl B p));
[ | apply (eisretr_path_sum _) ].
destruct (path_sum_inl B p).
reflexivity.
Defined.
Lemma ap_equiv {A B} (f : A <~> B) {x y : A} (p : x = y) :
ap (f^-1 o f) p = eissect f x @ p @ (eissect f y)^.
Proof. destruct p. hott_simpl. Defined.
(* END TODO *)
Section split. Section split.
Context `{Univalence}. Context `{Univalence}.
Variable (A : Type). Variable (A : Type).