mirror of https://github.com/nmvdw/HITs-Examples
Move aux lemmas into the plumbing file
This commit is contained in:
parent
5afb85b000
commit
c23ea61353
|
@ -1,6 +1,7 @@
|
|||
-R . "" COQC = hoqc COQDEP = hoqdep
|
||||
-R ../prelude ""
|
||||
notation.v
|
||||
plumbing.v
|
||||
lattice.v
|
||||
disjunction.v
|
||||
representations/bad.v
|
||||
|
|
|
@ -0,0 +1,16 @@
|
|||
Require Import HoTT.
|
||||
|
||||
(* Lemmas from this file do not belong in this project. *)
|
||||
(* Some of them should probably be in the HoTT library? *)
|
||||
|
||||
Lemma ap_inl_path_sum_inl {A B} (x y : A) (p : inl x = inl y) :
|
||||
ap inl (path_sum_inl B p) = p.
|
||||
Proof.
|
||||
transitivity (@path_sum _ B (inl x) (inl y) (path_sum_inl B p));
|
||||
[ | apply (eisretr_path_sum _) ].
|
||||
destruct (path_sum_inl B p).
|
||||
reflexivity.
|
||||
Defined.
|
||||
Lemma ap_equiv {A B} (f : A <~> B) {x y : A} (p : x = y) :
|
||||
ap (f^-1 o f) p = eissect f x @ p @ (eissect f y)^.
|
||||
Proof. destruct p. hott_simpl. Defined.
|
|
@ -1,5 +1,5 @@
|
|||
(* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *)
|
||||
Require Import HoTT HitTactics.
|
||||
Require Import HoTT HitTactics plumbing.
|
||||
Require Import Sub notation variations.k_finite.
|
||||
Require Import fsets.properties.
|
||||
|
||||
|
@ -150,21 +150,6 @@ Section empty.
|
|||
Defined.
|
||||
End empty.
|
||||
|
||||
|
||||
(* TODO: This should go into the HoTT library or in some other places *)
|
||||
Lemma ap_inl_path_sum_inl {A B} (x y : A) (p : inl x = inl y) :
|
||||
ap inl (path_sum_inl B p) = p.
|
||||
Proof.
|
||||
transitivity (@path_sum _ B (inl x) (inl y) (path_sum_inl B p));
|
||||
[ | apply (eisretr_path_sum _) ].
|
||||
destruct (path_sum_inl B p).
|
||||
reflexivity.
|
||||
Defined.
|
||||
Lemma ap_equiv {A B} (f : A <~> B) {x y : A} (p : x = y) :
|
||||
ap (f^-1 o f) p = eissect f x @ p @ (eissect f y)^.
|
||||
Proof. destruct p. hott_simpl. Defined.
|
||||
(* END TODO *)
|
||||
|
||||
Section split.
|
||||
Context `{Univalence}.
|
||||
Variable (A : Type).
|
||||
|
|
Loading…
Reference in New Issue