Enumerated implies Kurarowski-finite

This commit is contained in:
Dan Frumin 2017-08-03 15:10:01 +02:00
parent 31889d4e48
commit c7e12d6d25
3 changed files with 83 additions and 26 deletions

View File

@ -57,21 +57,19 @@ Section isIn.
End isIn.
Context `{Univalence}.
Instance koe : forall (T : Type) (Ttrunc : IsHProp T), IsTrunc (-1) (T + ~T).
Proof.
intros.
apply (equiv_hprop_allpath _)^-1.
intros [x | nx] [y | ny] ; try f_ap ; try (apply Ttrunc) ; try contradiction.
- apply equiv_hprop_allpath. apply _.
Defined.
Section intersect.
Variable A : Type.
Variable C : (Sub A) -> hProp.
Context `{Univalence}.
Instance hprop_lem : forall (T : Type) (Ttrunc : IsHProp T), IsHProp (T + ~T).
Proof.
intros.
apply (equiv_hprop_allpath _)^-1.
intros [x | nx] [y | ny] ; try f_ap ; try (apply Ttrunc) ; try contradiction.
- apply equiv_hprop_allpath. apply _.
Defined.
Context
{HI :hasIntersection C} {HE : hasEmpty C}
{HS : hasSingleton C} {HDE : hasDecidableEmpty C}.
@ -82,7 +80,6 @@ Section intersect.
unfold Decidable, hasEmpty, hasIntersection, hasSingleton, hasDecidableEmpty in *.
pose (HI (singleton a) (singleton b) (HS a) (HS b)) as IntAB.
pose (HDE (min_fun (singleton a) (singleton b)) IntAB) as IntE.
Print Trunc_rec.
refine (@Trunc_rec _ _ _ _ _ IntE) ; intros [p | p] ; unfold min_fun, singleton in p.
- right.
pose (apD10 p b) as pb ; unfold empty_sub in pb ; cbn in pb.
@ -113,4 +110,4 @@ Section intersect.
strip_truncations.
apply (inl (tr (t2^ @ t1))).
Defined.
End intersect.
End intersect.

View File

@ -1,6 +1,8 @@
(* Enumerated finite sets *)
Require Import HoTT HoTT.Types.Bool.
Require Import HoTT.
Require Import disjunction.
Require Import representations.cons_repr representations.definition variations.k_finite.
From fsets Require Import operations isomorphism.
Definition Sub A := A -> hProp.
@ -73,9 +75,11 @@ induction ls as [| a ls].
* apply IHls. apply HIH.
Defined.
(** Definition of finite sets in an enumerated sense *)
Definition enumerated (A : Type) : Type :=
exists ls, forall (a : A), listExt ls a.
(** Properties of enumerated sets: closed under decidable subsets *)
Lemma enumerated_comprehension (A : Type) (P : A -> Bool) :
enumerated A -> enumerated { x : A | P x = true }.
Proof.
@ -96,6 +100,7 @@ induction ls.
+ right. apply IHls. apply HIH.
Defined.
(** Properties of enumerated sets: closed under surjections *)
Lemma enumerated_surj (A B : Type) (f : A -> B) :
IsSurjection f -> enumerated A -> enumerated B.
Proof.
@ -129,6 +134,7 @@ induction ls'; simpl.
right. apply IHls'. apply Hls.
Defined.
(** Properties of enumerated sets: closed under sums *)
Lemma enumerated_sum (A B : Type) :
enumerated A -> enumerated B -> enumerated (A + B).
Proof.
@ -190,11 +196,46 @@ induction xs as [| x' xs]; intros x y.
simpl. apply tr. right. assumption.
Defined.
(** Properties of enumerated sets: closed under products *)
Lemma enumerated_prod (A B : Type) `{Funext} :
enumerated A -> enumerated B -> enumerated (A * B).
Proof.
intros [eA HeA] [eB HeB].
exists (listProd eA eB).
intros [x y].
apply listExt_prod; [ apply HeA | apply HeB ].
intros [eA HeA] [eB HeB].
exists (listProd eA eB).
intros [x y].
apply listExt_prod; [ apply HeA | apply HeB ].
Defined.
(** If a set is enumerated is it Kuratowski-finite *)
Section enumerated_fset.
Variable A : Type.
Context `{Univalence}.
Fixpoint list_to_fset (ls : list A) : FSet A :=
match ls with
| nil =>
| cons x xs => {|x|} (list_to_fset xs)
end.
Lemma list_to_fset_ext (ls : list A) (a : A):
listExt ls a -> isIn a (list_to_fset ls).
Proof.
induction ls as [|x xs]; simpl.
- apply idmap.
- intros Hin.
strip_truncations. apply tr.
destruct Hin as [Hax | Hin].
+ left. exact Hax.
+ right. by apply IHxs.
Defined.
Lemma enumerated_Kf : enumerated A -> Kf A.
Proof.
intros [ls Hls].
exists (list_to_fset ls).
apply path_forall. intro a.
symmetry. apply path_hprop.
apply if_hprop_then_equiv_Unit. apply _.
by apply list_to_fset_ext.
Defined.
End enumerated_fset.

View File

@ -3,7 +3,7 @@ Require Import lattice representations.definition fsets.operations extensionalit
Section k_finite.
Context {A : Type}.
Context (A : Type).
Context `{Univalence}.
Definition map (X : FSet A) : Sub A := fun a => isIn a X.
@ -33,8 +33,25 @@ Section k_finite.
Definition Kf : hProp := Kf_sub (fun x => True).
Lemma Kf_unfold : Kf <-> (exists (X : FSet A), forall (a : A), map X a).
Instance: IsHProp {X : FSet A & forall a : A, map X a}.
Proof.
apply hprop_allpath.
intros [X PX] [Y PY].
assert (X = Y) as HXY.
{ apply fset_ext. intros a.
unfold map in *.
apply path_hprop.
apply equiv_iff_hprop; intros.
+ apply PY.
+ apply PX. }
apply path_sigma with HXY. simpl.
apply path_forall. intro.
apply path_ishprop.
Defined.
Lemma Kf_unfold : Kf <~> (exists (X : FSet A), forall (a : A), map X a).
Proof.
apply equiv_equiv_iff_hprop. apply _. apply _.
split.
- intros [X PX]. exists X. intro a.
rewrite <- PX. done.
@ -46,8 +63,10 @@ Section k_finite.
End k_finite.
Arguments map {_} {_} _.
Section structure_k_finite.
Context {A : Type}.
Context (A : Type).
Context `{Univalence}.
Lemma map_union : forall X Y : FSet A, map (U X Y) = max_fun (map X) (map Y).
@ -56,8 +75,8 @@ Section structure_k_finite.
unfold map, max_fun.
reflexivity.
Defined.
Lemma k_finite_union : @hasUnion A Kf_sub.
Lemma k_finite_union : hasUnion (Kf_sub A).
Proof.
unfold hasUnion, Kf_sub, Kf_sub_intern.
intros.
@ -69,14 +88,14 @@ Section structure_k_finite.
reflexivity.
Defined.
Lemma k_finite_empty : @hasEmpty A Kf_sub.
Lemma k_finite_empty : hasEmpty (Kf_sub A).
Proof.
unfold hasEmpty, Kf_sub, Kf_sub_intern, map, empty_sub.
exists E.
reflexivity.
Defined.
Lemma k_finite_singleton : @hasSingleton A Kf_sub.
Lemma k_finite_singleton : hasSingleton (Kf_sub A).
Proof.
unfold hasSingleton, Kf_sub, Kf_sub_intern, map, singleton.
intro.
@ -87,7 +106,7 @@ Section structure_k_finite.
reflexivity.
Defined.
Lemma k_finite_hasDecidableEmpty : @hasDecidableEmpty A Kf_sub.
Lemma k_finite_hasDecidableEmpty : hasDecidableEmpty (Kf_sub A).
Proof.
unfold hasDecidableEmpty, hasEmpty, Kf_sub, Kf_sub_intern, map.
intros.