Further work on lists (simple implementation)

This commit is contained in:
Niels 2017-06-20 15:08:52 +02:00
parent 8c31e4d382
commit c8a84349b1
1 changed files with 16 additions and 128 deletions

View File

@ -3,14 +3,16 @@ Require Export definition operations Ext Lattice.
(* Lemmas relating operations to the membership predicate *)
Section operations_isIn.
Context {A : Type} `{DecidablePaths A}.
Lemma ext `{Funext} : forall (S T : FSet A), (forall a, isIn a S = isIn a T) -> S = T.
Proof.
apply fset_ext.
Defined.
(* Union and membership *)
Theorem union_isIn (X Y : FSet A) (a : A) :
Lemma union_isIn (X Y : FSet A) (a : A) :
isIn a (U X Y) = orb (isIn a X) (isIn a Y).
Proof.
reflexivity.
@ -32,7 +34,9 @@ try (intros ; apply set_path2).
Defined.
Lemma intersection_0r (X : FSet A) : intersection X E = E.
Proof. exact idpath. Defined.
Proof.
exact idpath.
Defined.
Lemma intersection_La (X : FSet A) (a : A) :
intersection (L a) X = if isIn a X then L a else E.
@ -238,22 +242,20 @@ Context {A : Type}.
Context {A_deceq : DecidablePaths A}.
(** isIn properties *)
Lemma isIn_singleton_eq (a b: A) : isIn a (L b) = true -> a = b.
Proof. unfold isIn. simpl.
destruct (dec (a = b)). intro. apply p.
intro X.
contradiction (false_ne_true X).
Defined.
Lemma isIn_empty_false (a: A) : isIn a E = true -> Empty.
Lemma singleton_isIn (a b: A) : isIn a (L b) = true -> a = b.
Proof.
cbv. intro X.
simpl.
destruct (dec (a = b)).
- intro.
apply p.
- intro X.
contradiction (false_ne_true X).
Defined.
Lemma isIn_union (a: A) (X Y: FSet A) :
isIn a (U X Y) = (isIn a X || isIn a Y)%Bool.
Proof. reflexivity. Qed.
Lemma empty_isIn (a: A) : isIn a E = false.
Proof.
reflexivity.
Defined.
(** comprehension properties *)
Lemma comprehension_false Y : comprehension (fun (_ : A) => false) Y = E.
@ -288,91 +290,6 @@ hrecursion; try (intros ; apply set_path2) ; cbn.
reflexivity.
Defined.
(** intersection properties *)
Lemma intersection_comm X Y: intersection X Y = intersection Y X.
Proof.
hrecursion X; try (intros; apply set_path2).
- apply intersection_0l.
- intro a.
hrecursion Y; try (intros; apply set_path2).
+ reflexivity.
+ intros b.
destruct (dec (a = b)) as [pa|npa].
* rewrite pa.
destruct (dec (b = b)) as [|nb]; [reflexivity|].
by contradiction nb.
* destruct (dec (b = a)) as [pb|]; [|reflexivity].
by contradiction npa.
+ intros Y1 Y2 IH1 IH2.
rewrite IH1.
rewrite IH2.
symmetry.
apply (comprehension_or (fun a => isIn a Y1) (fun a => isIn a Y2) (L a)).
- intros X1 X2 IH1 IH2.
rewrite <- IH1.
rewrite <- IH2.
unfold intersection; simpl.
apply comprehension_or.
Defined.
Theorem intersection_idem : forall (X : FSet A), intersection X X = X.
Proof.
hinduction; try (intros ; apply set_path2).
- reflexivity.
- intro a.
destruct (dec (a = a)).
* reflexivity.
* contradiction (n idpath).
- intros X Y IHX IHY.
f_ap;
unfold intersection in *.
+ transitivity (U (comprehension (fun a => isIn a X) X) (comprehension (fun a => isIn a Y) X)).
apply comprehension_or.
rewrite IHX.
rewrite (comm X).
apply comprehension_subset.
+ transitivity (U (comprehension (fun a => isIn a X) Y) (comprehension (fun a => isIn a Y) Y)).
apply comprehension_or.
rewrite IHY.
apply comprehension_subset.
Defined.
(** assorted lattice laws *)
Theorem intersection_assoc (X Y Z: FSet A) :
intersection X (intersection Y Z) = intersection (intersection X Y) Z.
Proof.
hinduction X; try (intros ; apply set_path2).
- cbn.
rewrite intersection_0l.
rewrite intersection_0l.
rewrite intersection_0l.
reflexivity.
- intros a.
cbn.
rewrite intersection_La.
rewrite intersection_La.
rewrite intersection_isIn.
destruct (isIn a Y).
* rewrite intersection_La.
destruct (isIn a Z).
+ reflexivity.
+ reflexivity.
* rewrite intersection_0l.
reflexivity.
- unfold intersection. cbn.
intros X1 X2 P Q.
rewrite comprehension_or.
rewrite P.
rewrite Q.
rewrite comprehension_or.
cbn.
rewrite comprehension_or.
reflexivity.
Defined.
Theorem comprehension_all : forall (X : FSet A),
comprehension (fun a => isIn a X) X = X.
Proof.
@ -391,7 +308,6 @@ hinduction; try (intros ; apply set_path2).
apply comprehension_subset.
Defined.
Theorem distributive_U_int `{Funext} (X1 X2 Y : FSet A) :
U (intersection X1 X2) Y = intersection (U X1 Y) (U X2 Y).
Proof.
@ -399,32 +315,4 @@ Proof.
destruct (a X1), (a X2), (a Y); eauto.
Defined.
Theorem absorb_0 (X Y : FSet A) : U X (intersection X Y) = X.
Proof.
hinduction X; try (intros ; apply set_path2) ; cbn.
- rewrite nl.
apply intersection_0l.
- intro a.
rewrite intersection_La.
destruct (isIn a Y).
* apply union_idem.
* apply nr.
- intros X1 X2 P Q.
rewrite distributive_intersection_U.
rewrite <- assoc.
rewrite (comm X2).
rewrite assoc.
rewrite assoc.
rewrite P.
rewrite <- assoc.
rewrite (comm _ X2).
rewrite Q.
reflexivity.
Defined.
Theorem absorb_1 `{Funext} (X Y : FSet A) : intersection X (U X Y) = X.
Proof.
toBool.
Defined.
End properties.