mirror of https://github.com/nmvdw/HITs-Examples
Added bounded quantification for lists
This commit is contained in:
parent
97002d119b
commit
d0f743432c
|
@ -16,7 +16,6 @@ kuratowski/properties.v
|
|||
kuratowski/length.v
|
||||
FSets.v
|
||||
interfaces/set_interface.v
|
||||
implementations/lists.v
|
||||
subobjects/sub.v
|
||||
subobjects/k_finite.v
|
||||
subobjects/enumerated.v
|
||||
|
@ -26,4 +25,5 @@ misc/dec_lem.v
|
|||
misc/ordered.v
|
||||
misc/projective.v
|
||||
misc/dec_kuratowski.v
|
||||
misc/dec_fset.v
|
||||
misc/dec_fset.v
|
||||
implementations/lists.v
|
|
@ -1,6 +1,6 @@
|
|||
(* Implementation of [FSet A] using lists *)
|
||||
Require Import HoTT HitTactics.
|
||||
Require Import FSets set_interface.
|
||||
Require Import FSets set_interface kuratowski.length prelude dec_fset.
|
||||
|
||||
Section Operations.
|
||||
Context `{Univalence}.
|
||||
|
@ -96,7 +96,7 @@ Section ListToSet.
|
|||
Proof.
|
||||
induction l ; simpl.
|
||||
- reflexivity.
|
||||
- rewrite append_union, ?IHl.
|
||||
- rewrite IHl, append_union.
|
||||
simpl.
|
||||
symmetry.
|
||||
rewrite nr, comm, <- assoc, idem.
|
||||
|
@ -108,7 +108,7 @@ End ListToSet.
|
|||
Section lists_are_sets.
|
||||
Context `{Univalence}.
|
||||
|
||||
Instance lists_sets : sets list list_to_set.
|
||||
Global Instance lists_sets : sets list list_to_set.
|
||||
Proof.
|
||||
split ; intros.
|
||||
- apply empty_empty.
|
||||
|
@ -118,3 +118,126 @@ Section lists_are_sets.
|
|||
- apply member_isIn.
|
||||
Defined.
|
||||
End lists_are_sets.
|
||||
|
||||
Section refinement_examples.
|
||||
Context `{Univalence}.
|
||||
Context {A : Type}.
|
||||
|
||||
Definition list_all (ϕ : A -> hProp) : list A -> hProp
|
||||
:= refinement list list_to_set (all ϕ).
|
||||
|
||||
Lemma list_all_set (ϕ : A -> hProp) (X : list A)
|
||||
: list_all ϕ X = all ϕ (list_to_set A X).
|
||||
Proof.
|
||||
induction X ; try reflexivity.
|
||||
Defined.
|
||||
|
||||
Lemma list_all_intro (X : list A) (ϕ : A -> hProp)
|
||||
: forall (HX : forall a, a ∈ X -> ϕ a), list_all ϕ X.
|
||||
Proof.
|
||||
rewrite list_all_set.
|
||||
intros H1.
|
||||
assert (forall (a : A), a ∈ (list_to_set A X) -> ϕ a) as H2.
|
||||
{
|
||||
intros a H3.
|
||||
rewrite <- (member_isIn A a X) in H3.
|
||||
apply (H1 a H3).
|
||||
}
|
||||
apply (all_intro _ _ H2).
|
||||
Defined.
|
||||
|
||||
Lemma list_all_elim (X : list A) (ϕ : A -> hProp) a
|
||||
: list_all ϕ X -> (a ∈ X) -> ϕ a.
|
||||
Proof.
|
||||
rewrite list_all_set, (member_isIn A a X).
|
||||
apply all_elim.
|
||||
Defined.
|
||||
|
||||
Definition list_exist (ϕ : A -> hProp) : list A -> hProp
|
||||
:= refinement list list_to_set (exist ϕ).
|
||||
|
||||
Lemma list_exist_set (ϕ : A -> hProp) (X : list A)
|
||||
: list_exist ϕ X = exist ϕ (list_to_set A X).
|
||||
Proof.
|
||||
induction X ; try reflexivity.
|
||||
Defined.
|
||||
|
||||
Lemma listexist_intro (X : list A) (ϕ : A -> hProp) a
|
||||
: a ∈ X -> ϕ a -> list_exist ϕ X.
|
||||
Proof.
|
||||
rewrite list_exist_set, (member_isIn A a X).
|
||||
apply exist_intro.
|
||||
Defined.
|
||||
|
||||
Lemma exist_elim (X : list A) (ϕ : A -> hProp)
|
||||
: list_exist ϕ X -> hexists (fun a => a ∈ X * ϕ a).
|
||||
Proof.
|
||||
rewrite list_exist_set.
|
||||
assert (hexists (fun a : A => a ∈ (list_to_set A X) * ϕ a)
|
||||
-> hexists (fun a : A => a ∈ X * ϕ a))
|
||||
as H2.
|
||||
{
|
||||
intros H1.
|
||||
strip_truncations.
|
||||
destruct H1 as [a H1].
|
||||
rewrite <- (member_isIn A a X) in H1.
|
||||
refine (tr(a;H1)).
|
||||
}
|
||||
intros H1.
|
||||
apply (H2 (exist_elim _ _ H1)).
|
||||
Defined.
|
||||
|
||||
Context `{MerelyDecidablePaths A}.
|
||||
|
||||
Global Instance dec_memb a (l : list A) : Decidable (a ∈ l).
|
||||
Proof.
|
||||
induction l as [ | a0 l] ; simpl.
|
||||
- apply _.
|
||||
- unfold Decidable.
|
||||
destruct IHl as [t | p].
|
||||
* apply (inl(tr(inr t))).
|
||||
* destruct (H0 a a0) as [t | p'].
|
||||
** left.
|
||||
strip_truncations.
|
||||
apply (tr(inl t)).
|
||||
** refine (inr(fun n => _)).
|
||||
strip_truncations.
|
||||
destruct n as [n1 | n2].
|
||||
*** apply (p' (tr n1)).
|
||||
*** apply (p n2).
|
||||
Defined.
|
||||
|
||||
Global Instance dec_memb_list : hasMembership_decidable (list A) A.
|
||||
Proof.
|
||||
intros a l.
|
||||
destruct (dec (a ∈ l)).
|
||||
- apply true.
|
||||
- apply false.
|
||||
Defined.
|
||||
|
||||
Lemma fset_list_memb a (l : list A) : a ∈_d (list_to_set A l) = a ∈_d l.
|
||||
Proof.
|
||||
unfold member_dec, dec_memb_list, fset_member_bool.
|
||||
destruct (dec a ∈ (list_to_set A l)), (dec a ∈ l) ; try reflexivity.
|
||||
- contradiction n.
|
||||
rewrite <- (f_member _ list_to_set) in t.
|
||||
apply t.
|
||||
- contradiction n.
|
||||
rewrite (f_member _ list_to_set) in t.
|
||||
apply t.
|
||||
Defined.
|
||||
|
||||
Definition set_length : list A -> nat
|
||||
:= refinement list list_to_set length.
|
||||
|
||||
Definition set_length_nil : set_length nil = 0 := idpath.
|
||||
|
||||
Definition set_length_cons a l
|
||||
: set_length (cons a l) = if (a ∈_d l) then set_length l else S(set_length l).
|
||||
Proof.
|
||||
unfold set_length, refinement.
|
||||
simpl.
|
||||
rewrite length_compute, fset_list_memb.
|
||||
reflexivity.
|
||||
Defined.
|
||||
End refinement_examples.
|
|
@ -357,7 +357,7 @@ Section refinement.
|
|||
Context `{sets T f} `{sets S g}.
|
||||
|
||||
Theorem transfer
|
||||
(A B : Type)
|
||||
{A B : Type}
|
||||
`{IsHSet B}
|
||||
(h : T A -> B)
|
||||
(hresp : forall x y : T A, set_eq f x y -> h x = h y)
|
||||
|
@ -370,8 +370,8 @@ Section refinement.
|
|||
apply (quotient_iso (g A) (class_of _ X)).
|
||||
Defined.
|
||||
|
||||
Definition refine
|
||||
(A B : Type)
|
||||
Definition refinement
|
||||
{A B : Type}
|
||||
`{IsHSet B}
|
||||
(h : FSet A -> B)
|
||||
: T A -> B
|
||||
|
|
|
@ -223,9 +223,9 @@ Section pauli.
|
|||
destruct x ; rewrite ?union_isIn; solve_in_list.
|
||||
Defined.
|
||||
|
||||
Definition comm x y : hProp := BuildhProp(Pauli_mult x y = Pauli_mult y x).
|
||||
Definition pauli_comm x y : hProp := BuildhProp(Pauli_mult x y = Pauli_mult y x).
|
||||
|
||||
Theorem Pauli_mult_comm : all (fun x => all (fun y => comm x y) Pauli_list) Pauli_list.
|
||||
Theorem Pauli_mult_comm : all (fun x => all (fun y => pauli_comm x y) Pauli_list) Pauli_list.
|
||||
Proof.
|
||||
refine (from_squash (all _ _)).
|
||||
compute.
|
||||
|
|
Loading…
Reference in New Issue