Added bounded quantification for lists

This commit is contained in:
Niels van der Weide 2017-10-09 23:41:29 +02:00
parent 97002d119b
commit d0f743432c
4 changed files with 133 additions and 10 deletions

View File

@ -16,7 +16,6 @@ kuratowski/properties.v
kuratowski/length.v
FSets.v
interfaces/set_interface.v
implementations/lists.v
subobjects/sub.v
subobjects/k_finite.v
subobjects/enumerated.v
@ -26,4 +25,5 @@ misc/dec_lem.v
misc/ordered.v
misc/projective.v
misc/dec_kuratowski.v
misc/dec_fset.v
misc/dec_fset.v
implementations/lists.v

View File

@ -1,6 +1,6 @@
(* Implementation of [FSet A] using lists *)
Require Import HoTT HitTactics.
Require Import FSets set_interface.
Require Import FSets set_interface kuratowski.length prelude dec_fset.
Section Operations.
Context `{Univalence}.
@ -96,7 +96,7 @@ Section ListToSet.
Proof.
induction l ; simpl.
- reflexivity.
- rewrite append_union, ?IHl.
- rewrite IHl, append_union.
simpl.
symmetry.
rewrite nr, comm, <- assoc, idem.
@ -108,7 +108,7 @@ End ListToSet.
Section lists_are_sets.
Context `{Univalence}.
Instance lists_sets : sets list list_to_set.
Global Instance lists_sets : sets list list_to_set.
Proof.
split ; intros.
- apply empty_empty.
@ -118,3 +118,126 @@ Section lists_are_sets.
- apply member_isIn.
Defined.
End lists_are_sets.
Section refinement_examples.
Context `{Univalence}.
Context {A : Type}.
Definition list_all (ϕ : A -> hProp) : list A -> hProp
:= refinement list list_to_set (all ϕ).
Lemma list_all_set (ϕ : A -> hProp) (X : list A)
: list_all ϕ X = all ϕ (list_to_set A X).
Proof.
induction X ; try reflexivity.
Defined.
Lemma list_all_intro (X : list A) (ϕ : A -> hProp)
: forall (HX : forall a, a X -> ϕ a), list_all ϕ X.
Proof.
rewrite list_all_set.
intros H1.
assert (forall (a : A), a (list_to_set A X) -> ϕ a) as H2.
{
intros a H3.
rewrite <- (member_isIn A a X) in H3.
apply (H1 a H3).
}
apply (all_intro _ _ H2).
Defined.
Lemma list_all_elim (X : list A) (ϕ : A -> hProp) a
: list_all ϕ X -> (a X) -> ϕ a.
Proof.
rewrite list_all_set, (member_isIn A a X).
apply all_elim.
Defined.
Definition list_exist (ϕ : A -> hProp) : list A -> hProp
:= refinement list list_to_set (exist ϕ).
Lemma list_exist_set (ϕ : A -> hProp) (X : list A)
: list_exist ϕ X = exist ϕ (list_to_set A X).
Proof.
induction X ; try reflexivity.
Defined.
Lemma listexist_intro (X : list A) (ϕ : A -> hProp) a
: a X -> ϕ a -> list_exist ϕ X.
Proof.
rewrite list_exist_set, (member_isIn A a X).
apply exist_intro.
Defined.
Lemma exist_elim (X : list A) (ϕ : A -> hProp)
: list_exist ϕ X -> hexists (fun a => a X * ϕ a).
Proof.
rewrite list_exist_set.
assert (hexists (fun a : A => a (list_to_set A X) * ϕ a)
-> hexists (fun a : A => a X * ϕ a))
as H2.
{
intros H1.
strip_truncations.
destruct H1 as [a H1].
rewrite <- (member_isIn A a X) in H1.
refine (tr(a;H1)).
}
intros H1.
apply (H2 (exist_elim _ _ H1)).
Defined.
Context `{MerelyDecidablePaths A}.
Global Instance dec_memb a (l : list A) : Decidable (a l).
Proof.
induction l as [ | a0 l] ; simpl.
- apply _.
- unfold Decidable.
destruct IHl as [t | p].
* apply (inl(tr(inr t))).
* destruct (H0 a a0) as [t | p'].
** left.
strip_truncations.
apply (tr(inl t)).
** refine (inr(fun n => _)).
strip_truncations.
destruct n as [n1 | n2].
*** apply (p' (tr n1)).
*** apply (p n2).
Defined.
Global Instance dec_memb_list : hasMembership_decidable (list A) A.
Proof.
intros a l.
destruct (dec (a l)).
- apply true.
- apply false.
Defined.
Lemma fset_list_memb a (l : list A) : a _d (list_to_set A l) = a _d l.
Proof.
unfold member_dec, dec_memb_list, fset_member_bool.
destruct (dec a (list_to_set A l)), (dec a l) ; try reflexivity.
- contradiction n.
rewrite <- (f_member _ list_to_set) in t.
apply t.
- contradiction n.
rewrite (f_member _ list_to_set) in t.
apply t.
Defined.
Definition set_length : list A -> nat
:= refinement list list_to_set length.
Definition set_length_nil : set_length nil = 0 := idpath.
Definition set_length_cons a l
: set_length (cons a l) = if (a _d l) then set_length l else S(set_length l).
Proof.
unfold set_length, refinement.
simpl.
rewrite length_compute, fset_list_memb.
reflexivity.
Defined.
End refinement_examples.

View File

@ -357,7 +357,7 @@ Section refinement.
Context `{sets T f} `{sets S g}.
Theorem transfer
(A B : Type)
{A B : Type}
`{IsHSet B}
(h : T A -> B)
(hresp : forall x y : T A, set_eq f x y -> h x = h y)
@ -370,8 +370,8 @@ Section refinement.
apply (quotient_iso (g A) (class_of _ X)).
Defined.
Definition refine
(A B : Type)
Definition refinement
{A B : Type}
`{IsHSet B}
(h : FSet A -> B)
: T A -> B

View File

@ -223,9 +223,9 @@ Section pauli.
destruct x ; rewrite ?union_isIn; solve_in_list.
Defined.
Definition comm x y : hProp := BuildhProp(Pauli_mult x y = Pauli_mult y x).
Definition pauli_comm x y : hProp := BuildhProp(Pauli_mult x y = Pauli_mult y x).
Theorem Pauli_mult_comm : all (fun x => all (fun y => comm x y) Pauli_list) Pauli_list.
Theorem Pauli_mult_comm : all (fun x => all (fun y => pauli_comm x y) Pauli_list) Pauli_list.
Proof.
refine (from_squash (all _ _)).
compute.