mirror of https://github.com/nmvdw/HITs-Examples
Added example of Pauli matrices
This commit is contained in:
parent
a0dbf4bfad
commit
d5e08c43bf
|
@ -130,4 +130,103 @@ Section simple_example.
|
|||
compute.
|
||||
apply tt.
|
||||
Defined.
|
||||
End simple_example.
|
||||
End simple_example.
|
||||
|
||||
Require Import k_finite.
|
||||
|
||||
Section pauli.
|
||||
|
||||
Inductive Pauli : Type :=
|
||||
| XP : Pauli
|
||||
| YP : Pauli
|
||||
| ZP : Pauli
|
||||
| IP : Pauli.
|
||||
|
||||
Definition Pauli_mult (x y : Pauli) : Pauli :=
|
||||
match x, y with
|
||||
| XP, XP => IP
|
||||
| XP, YP => ZP
|
||||
| XP, ZP => YP
|
||||
| YP, XP => ZP
|
||||
| YP, YP => IP
|
||||
| YP, ZP => XP
|
||||
| ZP, XP => YP
|
||||
| ZP, YP => XP
|
||||
| ZP, ZP => IP
|
||||
| IP, x => x
|
||||
| x, IP => x
|
||||
end.
|
||||
|
||||
Definition not_XP (x : Pauli) :=
|
||||
match x with
|
||||
| XP => Empty
|
||||
| x => Unit
|
||||
end.
|
||||
|
||||
Definition not_YP (x : Pauli) :=
|
||||
match x with
|
||||
| YP => Empty
|
||||
| x => Unit
|
||||
end.
|
||||
|
||||
Definition not_ZP (x : Pauli) :=
|
||||
match x with
|
||||
| ZP => Empty
|
||||
| x => Unit
|
||||
end.
|
||||
|
||||
Definition not_IP (x : Pauli) :=
|
||||
match x with
|
||||
| IP => Empty
|
||||
| x => Unit
|
||||
end.
|
||||
|
||||
Global Instance decidable_eq_pauli : DecidablePaths Pauli.
|
||||
Proof.
|
||||
intros [ | | |] [ | | | ] ; try (apply (inl idpath)) ; try (refine (inr (fun p => _)))
|
||||
; (refine (transport not_XP p tt) || refine (transport not_YP p tt)
|
||||
|| refine (transport not_ZP p tt) || refine (transport not_IP p tt)).
|
||||
Defined.
|
||||
|
||||
Global Instance Pauli_set : IsHSet Pauli.
|
||||
Proof.
|
||||
apply _.
|
||||
Defined.
|
||||
|
||||
Context `{Univalence}.
|
||||
|
||||
Definition Pauli_list : FSet Pauli := {|XP|} ∪ {|YP|} ∪ {|ZP|} ∪ {|IP|}.
|
||||
|
||||
Theorem Pauli_finite : Kf Pauli.
|
||||
Proof.
|
||||
unfold Kf, Kf_sub, Kf_sub_intern.
|
||||
exists Pauli_list.
|
||||
apply path_forall.
|
||||
unfold map.
|
||||
intros [ | | | ] ; rewrite ?union_isIn ; apply path_iff_hprop ; try constructor ; intros [].
|
||||
- apply (tr(inl(tr idpath))).
|
||||
- apply (tr(inr(tr(inl(tr idpath))))).
|
||||
- apply (tr(inr(tr(inr(tr(inl(tr idpath))))))).
|
||||
- refine (tr(inr(tr(inr(tr(inr(tr idpath))))))).
|
||||
Defined.
|
||||
|
||||
Theorem Pauli_all (P : Pauli -> hProp) : all P Pauli_list -> forall (x : Pauli), P x.
|
||||
Proof.
|
||||
intros HP x.
|
||||
refine (all_elim P Pauli_list x HP _).
|
||||
destruct x ; rewrite ?union_isIn ; try constructor.
|
||||
- apply (tr(inl(tr idpath))).
|
||||
- apply (tr(inr(tr(inl(tr idpath))))).
|
||||
- apply (tr(inr(tr(inr(tr(inl(tr idpath))))))).
|
||||
- refine (tr(inr(tr(inr(tr(inr(tr idpath))))))).
|
||||
Defined.
|
||||
|
||||
Definition comm x y : hProp := BuildhProp(Pauli_mult x y = Pauli_mult y x).
|
||||
|
||||
Theorem Pauli_mult_comm : all (fun x => all (fun y => comm x y) Pauli_list) Pauli_list.
|
||||
Proof.
|
||||
refine (from_squash (all _ _)).
|
||||
compute.
|
||||
apply tt.
|
||||
Defined.
|
||||
End pauli.
|
||||
|
|
Loading…
Reference in New Issue