Some cleaning in list representation

This commit is contained in:
Niels van der Weide 2017-09-26 11:56:58 +02:00
parent 0e9fcbc588
commit d7a95697fb
3 changed files with 34 additions and 17 deletions

View File

@ -11,15 +11,17 @@ Section length.
apply (if a _d X then n else (S n)).
- intros X a n.
simpl.
simplify_isIn_d.
destruct (dec (a X)) ; reflexivity.
rewrite ?union_isIn_d, singleton_isIn_d_aa.
reflexivity.
- intros X a b n.
simpl.
simplify_isIn_d.
rewrite ?union_isIn_d.
destruct (m_dec_path a b) as [Hab | Hab].
+ strip_truncations.
rewrite Hab. simplify_isIn_d. reflexivity.
+ rewrite ?singleton_isIn_d_false; auto.
rewrite Hab.
rewrite ?singleton_isIn_d_aa.
reflexivity.
+ rewrite ?singleton_isIn_d_false.
++ simpl.
destruct (a _d X), (b _d X) ; reflexivity.
++ intro p. contradiction (Hab (tr p^)).

View File

@ -219,18 +219,12 @@ Section FSet_cons_rec.
(Pcomm : forall X a b p, Pcons a ({|b|} X) (Pcons b X p)
= Pcons b ({|a|} X) (Pcons a X p)).
Definition FSet_cons_rec (X : FSet A) : P.
Proof.
simple refine (FSetC_ind A (fun _ => P) _ Pe _ _ _ (FSet_to_FSetC X)) ; simpl.
- intros a Y p.
apply (Pcons a (FSetC_to_FSet Y) p).
- intros.
refine (transport_const _ _ @ _).
apply Pdupl.
- intros.
refine (transport_const _ _ @ _).
apply Pcomm.
Defined.
Definition FSet_cons_rec (X : FSet A) : P :=
FSetC_prim_rec A P Pset Pe
(fun a Y p => Pcons a (FSetC_to_FSet Y) p)
(fun _ _ => Pdupl _ _)
(fun _ _ _ => Pcomm _ _ _)
(FSet_to_FSetC X).
Definition FSet_cons_beta_empty : FSet_cons_rec = Pe := idpath.

View File

@ -79,6 +79,27 @@ Module Export FSetC.
indTy := _; recTy := _;
H_inductor := FSetC_ind A; H_recursor := FSetC_rec A
}.
Section FSetC_prim_recursion.
Variable (A : Type)
(P : Type)
(H : IsHSet P)
(nil : P)
(cns : A -> FSetC A -> P -> P)
(duplP : forall (a : A) (X : FSetC A) (x : P),
cns a (a ;; X) (cns a X x) = (cns a X x))
(commP : forall (a b: A) (X : FSetC A) (x: P),
cns a (b ;; X) (cns b X x) = cns b (a ;; X) (cns a X x)).
(* Recursion principle *)
Definition FSetC_prim_rec : FSetC A -> P.
Proof.
simple refine (FSetC_ind A (fun _ => P) (fun _ => H) nil cns _ _ );
try (intros; simple refine ((transport_const _ _) @ _ )); cbn.
- apply duplP.
- apply commP.
Defined.
End FSetC_prim_recursion.
End FSetC.
Infix ";;" := Cns (at level 8, right associativity).