Added interface of finite stes

This commit is contained in:
Niels 2017-08-07 12:20:43 +02:00
parent 376efbf2e9
commit d9cde16f5a
15 changed files with 121 additions and 1020 deletions

View File

@ -1,98 +0,0 @@
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module CL where
private
data CL' : Set where
K' : CL'
S' : CL'
app' : CL' -> CL' -> CL'
CL : Set
CL = CL'
K : CL
K = K'
Sc : CL
Sc = S'
app : CL -> CL -> CL
app = app'
postulate
KConv : {x y : CL} -> app (app K x) y == x
SConv : {x y z : CL} -> app (app (app Sc x) y) z == app (app x z) (app y z)
CLind : (Y : CL -> Set)
(KY : Y K)
(SY : Y Sc)
(appY : (x y : CL) -> Y x -> Y y -> Y (app x y))
(KConvY : (x y : CL) (a : Y x) (b : Y y) -> PathOver Y KConv (appY (app K x) y (appY K x KY a) b) a)
(SConvY : (x y z : CL) (a : Y x) (b : Y y) (c : Y z) ->
PathOver Y SConv
(appY
(app (app Sc x) y)
z
(appY
(app Sc x)
y
(appY Sc x SY a)
b
)
c
)
(appY (app x z) (app y z) (appY x z a c) (appY y z b c))
)
(x : CL) -> Y x
CLind Y KY SY appY _ _ K' = KY
CLind Y KY SY appY _ _ S' = SY
CLind Y KY SY appY KConvY SConvY (app' x x₁) = appY x x₁ (CLind Y KY SY appY KConvY SConvY x) (CLind Y KY SY appY KConvY SConvY x₁)
postulate
CLind_βKConv : (Y : CL -> Set)
(KY : Y K)
(SY : Y Sc)
(appY : (x y : CL) -> Y x -> Y y -> Y (app x y))
(KConvY : (x y : CL) (a : Y x) (b : Y y) -> PathOver Y KConv (appY (app K x) y (appY K x KY a) b) a)
(SConvY : (x y z : CL) (a : Y x) (b : Y y) (c : Y z) ->
PathOver Y SConv
(appY
(app (app Sc x) y)
z
(appY
(app Sc x)
y
(appY Sc x SY a)
b
)
c
)
(appY (app x z) (app y z) (appY x z a c) (appY y z b c))
)
(x y : CL) ->
apd (CLind Y KY SY appY KConvY SConvY) KConv == KConvY x y (CLind Y KY SY appY KConvY SConvY x) (CLind Y KY SY appY KConvY SConvY y)
CLind_βSConv : (Y : CL -> Set)
(KY : Y K)
(SY : Y Sc)
(appY : (x y : CL) -> Y x -> Y y -> Y (app x y))
(KConvY : (x y : CL) (a : Y x) (b : Y y) -> PathOver Y KConv (appY (app K x) y (appY K x KY a) b) a)
(SConvY : (x y z : CL) (a : Y x) (b : Y y) (c : Y z) ->
PathOver Y SConv
(appY
(app (app Sc x) y)
z
(appY
(app Sc x)
y
(appY Sc x SY a)
b
)
c
)
(appY (app x z) (app y z) (appY x z a c) (appY y z b c))
)
(x y z : CL) ->
apd (CLind Y KY SY appY KConvY SConvY) SConv == SConvY x y z (CLind Y KY SY appY KConvY SConvY x) (CLind Y KY SY appY KConvY SConvY y) (CLind Y KY SY appY KConvY SConvY z)

View File

@ -1,122 +0,0 @@
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import CL
module Thms where
trans-cst : (A : Set) {x y : A} (B : Set) (p : x == y) (z : B) -> transport (\x -> B) p z == z
trans-cst A B idp z = idp
I : CL
I = app (app Sc K) K
IConv : {x : CL} -> app I x == x
IConv {x} = SConv ∙ KConv
B : CL
B = app (app Sc (app K Sc)) K
BConv : {x y z : CL} -> app (app (app B x) y) z == app x (app y z)
BConv {x} {y} {z} =
ap (λ p -> app (app p y) z) SConv
∙ ap (λ p -> app (app (app (p) (app K x)) y) z) KConv
∙ SConv
∙ ap (λ p -> app p (app y z)) KConv
M : CL
M = app (app Sc I) I
MConv : {x : CL} -> app M x == app x x
MConv {x} =
SConv
∙ ap (λ p -> app p (app I x)) IConv
∙ ap (app x) IConv
T : CL
T = app (app B (app Sc I)) K
TConv : {x y : CL} -> app (app T x) y == app y x
TConv {x} {y} =
ap (λ p -> app p y) BConv
∙ SConv
∙ ap (λ p -> app p (app (app K x) y)) IConv
∙ ap (app y) KConv
C : CL
C =
app
(app
B
(app
T
(app
(app
B
B
)
T
)
)
)
(app
(app
B
B
)
T
)
CConv : {x y z : CL} -> app (app (app C x) y) z == app (app x z) y
CConv {x} {y} {z} =
ap (λ p -> app (app p y) z) BConv
∙ ap (λ p -> app (app p y) z) TConv
∙ ap (λ p -> app (app (app p (app (app B B) T)) y) z) BConv
∙ ap (λ p -> app p z) BConv
∙ ap (λ p -> app p z) TConv
∙ ap (λ p -> app (app p x) z) BConv
∙ BConv
∙ TConv
W : CL
W = app (app C Sc) I
WConv : {x y : CL} -> app (app W x) y == app (app x y) y
WConv {x} {y} =
ap (λ p -> app p y) CConv
∙ SConv
∙ ap (app (app x y)) IConv
B' : CL
B' = app C B
B'Conv : {x y z : CL} -> app (app (app B' x) y) z == app y (app x z)
B'Conv {x} {y} {z} =
ap (λ p -> app p z) CConv
∙ BConv
V : CL
V = app (app B C) T
VConv : {x y z : CL} -> app (app (app V x) y) z == app (app z x) y
VConv {x} {y} {z} =
ap (λ p -> app (app p y) z) BConv
∙ CConv
∙ ap (λ p -> app p y) TConv
Y : CL
Y = app (app B' (app B' M)) M
YConv : {x : CL} -> app Y x == app x (app Y x)
YConv {x} =
B'Conv
∙ MConv
∙ B'Conv
∙ ap (app x) (! B'Conv)
fixpoint : (x : CL) -> Σ CL (λ y -> app x y == y)
fixpoint x = app Y x , ! YConv
S' : CL
S' = app C Sc

View File

@ -1,59 +0,0 @@
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module Expressions where
private
data Exp' : Set where
value : Nat -> Exp'
addition : Exp' -> Exp' -> Exp'
Exp : Set
Exp = Exp'
val : Nat -> Exp
val = value
plus : Exp -> Exp -> Exp
plus = addition
postulate
add : (n m : Nat) -> plus (val n) (val m) == val (n + m)
trunc : is-set Exp
Exp-ind : (C : Exp -> Set)
-> (vC : (n : Nat) -> C (val n))
-> (pC : (e₁ e₂ : Exp) -> C e₁ -> C e₂ -> C(plus e₁ e₂))
-> (addC : (n m : Nat) -> PathOver C (add n m) (pC (val n) (val m) (vC n) (vC m)) (vC (n + m)))
-> (t : (e : Exp) -> is-set (C e))
-> (x : Exp) -> C x
Exp-ind C vC pC addC t (value n) = vC n
Exp-ind C vC pC addC t (addition e₁ e₂) = pC e₁ e₂ (Exp-ind C vC pC addC t e₁) (Exp-ind C vC pC addC t e₂)
postulate
Exp-ind-βadd : (C : Exp -> Set)
-> (vC : (n : Nat) -> C (val n))
-> (pC : (e₁ e₂ : Exp) -> C e₁ -> C e₂ -> C(plus e₁ e₂))
-> (addC : (n m : Nat) -> PathOver C (add n m) (pC (val n) (val m) (vC n) (vC m)) (vC (n + m)))
-> (t : (e : Exp) -> is-set (C e))
-> (n m : Nat)
-> apd (Exp-ind C vC pC addC t) (add n m) == addC n m
Exp-rec : {C : Set}
-> (vC : Nat -> C)
-> (pC : C -> C -> C)
-> (addC : (n m : Nat) -> pC (vC n) (vC m) == vC (n + m))
-> (t : is-set C)
-> Exp -> C
Exp-rec vC pC addC t (value n) = vC n
Exp-rec vC pC addC t (addition e₁ e₂) = pC (Exp-rec vC pC addC t e₁) (Exp-rec vC pC addC t e₂)
postulate
Exp-rec-βadd : {C : Set}
-> (vC : Nat -> C)
-> (pC : C -> C -> C)
-> (addC : (n m : Nat) -> pC (vC n) (vC m) == vC (n + m))
-> (t : is-set C)
-> (n m : Nat)
-> ap (Exp-rec vC pC addC t) (add n m) == addC n m

View File

@ -1,16 +0,0 @@
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import Expressions
module Thms where
value : (e : Exp) -> Σ Nat (\n -> e == val n)
value = Exp-ind
(\e -> Σ Nat (\n -> e == val n))
(\n -> n , idp)
(\e₁ e₂ v₁ v₂ -> fst v₁ + fst v₂ ,
(ap (\e -> plus e e₂) (snd v₁) ∙ ap (plus (val (fst v₁))) (snd v₂)) ∙ add (fst v₁) (fst v₂)
)
(\n m -> from-transp! (\e -> Σ Nat (\n -> e == val n)) (add n m) (pair= {!!} {!!}))
(\e -> {!!})

View File

@ -1,32 +0,0 @@
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import Syntax
module Language where
data Program : Set where
fail : Program
exec : Syntax -> State -> Program
postulate
assignp : (z : State) (x n : Nat) -> exec (x := n) z == exec skip ( z [ x :== n ])
comp₁ : (z : State) (S : Syntax) -> exec (conc skip S) z == exec S z
comp₂ : (z z' : State) (S₁ S₂ S₁' : Syntax) -> exec S₁ z == exec S₁' z' -> exec (conc S₁ S₂) z == exec (conc S₁' S₂) z'
while₁ : (z : State) (x n : Nat) (S : Syntax) -> defined z x -> equals z x n -> exec (while x == n do S) z == exec (conc S (while x == n do S)) z
while₂ : (z : State) (x n : Nat) (S : Syntax) -> defined z x -> unequals z x n -> exec (while x == n do S) z == exec skip z
while₃ : (z : State) (x n : Nat) (S : Syntax) -> undefined z x -> exec (while x == n do S) z == fail
Program-elim :
(Y : Set)
-> (failY : Y)
-> (execY : Syntax -> State -> Y)
-> (assignY : (z : State) (x n : Nat) -> execY (x := n) z == execY skip ( z [ x :== n ]) )
-> (compY₁ : (z : State) (S : Syntax) -> execY (conc skip S) z == execY S z )
-> (compY₂ : (z z' : State) (S₁ S₂ S₁' : Syntax) -> execY S₁ z == execY S₁' z' -> execY (conc S₁ S₂) z == execY (conc S₁' S₂) z')
-> (whileY₁ : (z : State) (x n : Nat) (S : Syntax) -> defined z x -> equals z x n -> execY (while x == n do S) z == execY (conc S (while x == n do S)) z)
-> (whileY₂ : (z : State) (x n : Nat) (S : Syntax) -> defined z x -> unequals z x n -> execY (while x == n do S) z == execY skip z)
-> (whileY₃ : (z : State) (x n : Nat) (S : Syntax) -> undefined z x -> execY (while x == n do S) z == failY)
-> Program -> Y
Program-elim _ failY _ _ _ _ _ _ _ fail = failY
Program-elim _ _ execY _ _ _ _ _ _ (exec s z) = execY s z

View File

@ -1,18 +0,0 @@
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module Semantics where
data koe : Set where
a : koe
b : koe
postulate
kek : a ↦ b
{-# REWRITE kek #-}
Y : koe -> Set
Y a = Nat
Y b = Bool

View File

@ -1,66 +0,0 @@
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module Syntax where
data Maybe (A : Set) : Set where
Just : A -> Maybe A
Nothing : Maybe A
eqN : Nat -> Nat -> Bool
eqN 0 0 = true
eqN 0 _ = false
eqN (S _) 0 = false
eqN (S n) (S m) = eqN n m
-- first coordinate represents the variable x_i, second the value
State : Set
State = List (Nat × Nat)
_[_:==_] : State -> Nat -> Nat -> State
nil [ x :== n ] = (x , n) :: nil
((y , m) :: s) [ x :== n ] =
if eqN x y
then (x , n) :: s
else ((y , m) :: (s [ x :== n ]))
equals : State -> Nat -> Nat -> Set
equals nil _ _ = Empty
equals ((x , n) :: s) y m =
if eqN x y
then
if eqN n m
then Unit
else Empty
else equals s y m
unequals : State -> Nat -> Nat -> Set
unequals nil _ _ = Unit
unequals ((x , n) :: s) y m =
if eqN x y
then
if eqN n m
then Empty
else Unit
else unequals s y m
defined : State -> Nat -> Set
defined nil y = Empty
defined ((x , n) :: s) y =
if eqN x y
then Unit
else defined s y
undefined : State -> Nat -> Set
undefined nil y = Unit
undefined ((x , n) :: s) y =
if eqN x y
then Empty
else undefined s y
data Syntax : Set where
skip : Syntax
_:=_ : Nat -> Nat -> Syntax
conc : Syntax -> Syntax -> Syntax
while_==_do_ : Nat -> Nat -> Syntax -> Syntax

View File

@ -1,63 +0,0 @@
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module Integers where
private
data Integers : Set where
z : Integers
S : Integers -> Integers
P : Integers -> Integers
Ints : Set
Ints = Integers
nul : Ints
nul = z
Succ : Ints -> Ints
Succ = S
Pred : Ints -> Ints
Pred = P
postulate
invl : (x : Integers) -> P(S x) == x
invr : (x : Integers) -> S(P x) == x
trunc : is-set Ints
Zind : (Y : Integers -> Set)
-> (zY : Y z)
-> (SY : (x : Integers) -> Y x -> Y(S x))
-> (PY : (x : Integers) -> Y x -> Y(P x))
-> (invYl : (x : Integers) (y : Y x) -> PathOver Y (invl x) (PY (S x) (SY x y)) y)
-> (invYr : (x : Integers) (y : Y x) -> PathOver Y (invr x) (SY (P x) (PY x y)) y)
-> (t : (x : Integers) -> is-set (Y x))
-> (x : Integers) -> Y x
Zind Y zY SY PY invYl invYr t z = zY
Zind Y zY SY PY invYl invYr t (S x) = SY x (Zind Y zY SY PY invYl invYr t x)
Zind Y zY SY PY invYl invYr t (P x) = PY x (Zind Y zY SY PY invYl invYr t x)
postulate
Zind-βinvl :
(Y : Integers -> Set)
-> (zY : Y z)
-> (SY : (x : Integers) -> Y x -> Y(S x))
-> (PY : (x : Integers) -> Y x -> Y(P x))
-> (invYl : (x : Integers) (y : Y x) -> PathOver Y (invl x) (PY (S x) (SY x y)) y)
-> (invYr : (x : Integers) (y : Y x) -> PathOver Y (invr x) (SY (P x) (PY x y)) y)
-> (t : (x : Integers) -> is-set (Y x))
-> (x : Integers)
-> apd (Zind Y zY SY PY invYl invYr t) (invl x) == invYl x (Zind Y zY SY PY invYl invYr t x)
Zind-βinvr :
(Y : Integers -> Set)
-> (zY : Y z)
-> (SY : (x : Integers) -> Y x -> Y(S x))
-> (PY : (x : Integers) -> Y x -> Y(P x))
-> (invYl : (x : Integers) (y : Y x) -> PathOver Y (invl x) (PY (S x) (SY x y)) y)
-> (invYr : (x : Integers) (y : Y x) -> PathOver Y (invr x) (SY (P x) (PY x y)) y)
-> (t : (x : Integers) -> is-set (Y x))
-> (x : Integers)
-> apd (Zind Y zY SY PY invYl invYr t) (invr x) == invYr x (Zind Y zY SY PY invYl invYr t x)

View File

@ -1,205 +0,0 @@
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import Integers
module Thms where
paths_set : (A B : Set) (m : is-set B) (f g : A -> B) (a : A) -> is-set (f a == g a)
paths_set A B m f g a = \c₁ c₂ q₁ q₂ ->
prop-has-level-S
(contr-is-prop (m (f a) (g a) c₁ c₂))
q₁
q₂
trunc_paths : (A : Set) (Y : A -> Set) {x y : A} (p : x == y) (t : is-prop (Y x)) (c₁ : Y x) (c₂ : Y y) -> PathOver Y p c₁ c₂
trunc_paths A Y p t c₁ c₂ = from-transp! Y p ((prop-has-all-paths t) c₁ (transport! Y p c₂))
trans-cst : (A : Set) {x y : A} (B : Set) (p : x == y) (z : B) -> transport (\x -> B) p z == z
trans-cst A B idp z = idp
plus : Ints -> Ints -> Ints
plus n = Zind
(\m -> Ints)
n
(\m -> Succ)
(\m -> Pred)
(\x y -> from-transp (λ _ → Ints) (invl x) (trans-cst Ints Ints (invl x) (Pred (Succ y)) ∙ invl y))
(\x y -> from-transp (λ _ → Ints) (invr x) (trans-cst Ints Ints (invr x) (Succ (Pred y)) ∙ invr y))
(\x -> trunc)
negate : Ints -> Ints
negate = Zind
(λ _ → Ints)
nul
(λ _ -> Pred)
(λ _ -> Succ)
(λ x y -> from-transp (λ _ -> Ints) (invl x) (trans-cst Ints Ints (invl x) (Succ (Pred y)) ∙ invr y))
(λ x y -> from-transp (λ _ -> Ints) (invr x) (trans-cst Ints Ints (invr x) (Pred (Succ y)) ∙ invl y))
(\x -> trunc)
min : Ints -> Ints -> Ints
min x y = plus x (negate y)
plus_0n : (x : Ints) -> plus x nul == x
plus_0n x = idp
plus_n0 : (x : Ints) -> plus nul x == x
plus_n0 = Zind
(\x -> plus nul x == x)
idp
(\x p -> ap Succ p)
(\x p -> ap Pred p)
(\x y ->
trunc_paths
Ints
(\m -> plus nul m == m)
(invl x)
(trunc (plus nul (Pred (Succ x)))
(Pred(Succ x)))
(ap Pred (ap Succ y))
y
)
(\x y ->
trunc_paths
Ints
(\m -> plus nul m == m)
(invr x)
(trunc (plus nul (Succ (Pred x)))
(Succ(Pred x)))
(ap Succ (ap Pred y))
y
)
(\x -> paths_set Ints Ints trunc (\m -> plus nul m) (\m -> m) x)
plus_assoc : (x y z : Ints) -> plus x (plus y z) == plus (plus x y) z
plus_assoc x = Zind
(λ y -> (z : Ints) -> plus x (plus y z) == plus (plus x y) z)
(
Zind
(λ z -> plus x (plus nul z) == plus (plus x nul) z)
idp
(λ x p -> ap Succ p)
(λ x p -> ap Pred p)
{!!}
{!!}
{!!}
)
(λ y p ->
Zind
(λ z -> plus x (plus (Succ y) z) == plus (plus x (Succ y)) z)
(p (Succ nul))
(λ y' p' -> ap Succ p')
(λ y' p' -> ap Pred p')
{!!}
{!!}
{!!}
)
(λ y p ->
Zind
(λ z -> plus x (plus (Pred y) z) == plus (plus x (Pred y)) z)
(p (Pred nul))
(λ y' p' -> ap Succ p')
(λ y' p' -> ap Pred p')
{!!}
{!!}
{!!}
)
{!!}
{!!}
{!!}
plus_Succ : (x y : Ints) -> plus x (Succ y) == Succ(plus x y)
plus_Succ x y = idp
Succ_plus : (x y : Ints) -> plus (Succ x) y == Succ(plus x y)
Succ_plus x = Zind
(λ y -> plus (Succ x) y == Succ(plus x y))
idp
(λ y' p -> ap Succ p)
(λ y' p -> ap Pred p ∙ invl (plus x y') ∙ ! (invr (plus x y')))
{!!}
{!!}
{!!}
plus_Pred : (x y : Ints) -> plus x (Pred y) == Pred(plus x y)
plus_Pred x y = idp
Pred_plus : (x y : Ints) -> plus (Pred x) y == Pred(plus x y)
Pred_plus x = Zind
(λ y -> plus (Pred x) y == Pred(plus x y))
idp
(λ y' p -> ap Succ p ∙ invr (plus x y') ∙ ! (invl (plus x y')))
(λ y' p -> ap Pred p)
{!!}
{!!}
{!!}
plus_negr : (y : Ints) -> plus y (negate y) == nul
plus_negr = Zind
(λ y -> plus y (negate y) == nul)
idp
(λ x p ->
Succ_plus x (negate (Succ x))
∙ invr (plus x (negate x))
∙ p
)
(λ x p ->
Pred_plus x (negate (Pred x))
∙ invl (plus x (negate x))
∙ p
)
{!!}
{!!}
{!!}
plus_negl : (y : Ints) -> plus (negate y) y == nul
plus_negl = Zind
(λ y -> plus (negate y) y == nul)
idp
(λ y' p ->
Pred_plus (negate y') (Succ y')
∙ invl (plus (negate y') y')
∙ p
)
(λ y' p ->
Succ_plus (negate y') (Pred y')
∙ invr (plus (negate y') y')
∙ p
)
{!!}
{!!}
{!!}
plus_com : (x y : Ints) -> plus x y == plus y x
plus_com x = Zind
(λ y -> plus x y == plus y x)
(plus_0n x ∙ ! (plus_n0 x))
(λ y' p ->
plus_Succ x y'
∙ ap Succ p
∙ ! (Succ_plus y' x))
(λ y' p ->
plus_Pred x y'
∙ ap Pred p
∙ ! (Pred_plus y' x)
)
{!!}
{!!}
{!!}
times : Ints -> Ints -> Ints
times n = Zind
(λ _ → Ints)
nul
(\x y -> plus y n)
(\x y -> min y n)
(λ x y -> from-transp (λ _ → Ints) (invl x) (trans-cst Ints Ints (invl x) (min (plus y n) n)
∙ ! (plus_assoc y n (negate n))
∙ ap (plus y) (plus_negr n)
∙ plus_0n y))
(λ x y -> from-transp (λ _ → Ints) (invr x) (trans-cst Ints Ints (invr x) (plus (min y n) n)
∙ ! (plus_assoc y (negate n) n)
∙ ap (λ z -> plus y z) (plus_negl n)
∙ plus_0n y))
(\x -> trunc)

View File

@ -1,49 +0,0 @@
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module Interval where
postulate
I : Set
z : I
o : I
s : z == o
I-ind : (Y : I -> Set)
(zY : Y z)
(oY : Y o)
(sY : PathOver Y s zY oY)
(x : I)
-> Y x
I-ind-βz : (Y : I -> Set)
(zY : Y z)
(oY : Y o)
(sY : PathOver Y s zY oY)
-> I-ind Y zY oY sY z ↦ zY
{-# REWRITE I-ind-βz #-}
I-ind-βo : (Y : I -> Set)
(zY : Y z)
(oY : Y o)
(sY : PathOver Y s zY oY)
-> I-ind Y zY oY sY o ↦ oY
{-# REWRITE I-ind-βo #-}
I-ind-βs : (Y : I -> Set)
(zY : Y z)
(oY : Y o)
(sY : PathOver Y s zY oY)
-> apd (I-ind Y zY oY sY) s == sY
transp-cst : (A : Set) {x y : A} (B : Set) (p : x == y) (z : B) -> transport (\x -> B) p z == z
transp-cst A B idp z = idp
transp-fun : (A B : Set) (a b : A) (p : a == b) (f : A -> B) -> transport (λ _ -> A -> B) p f == transport (λ _ -> B) p (f a)
transp-fun = ?
fe : {A B : Set} (f g : A -> B) -> ( (x : A) -> f x == g x) -> f == g
fe {A} {B} f g p =
ap
(I-ind (λ _ → (x : A) → B) f g
(from-transp (λ _ → (x : A) → B) s (
{!!}
)))
s

View File

@ -1,59 +0,0 @@
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module Mod2 where
private
data M' : Set where
Zero : M'
S : M' -> M'
M : Set
M = M'
z : M
z = Zero
Succ : M -> M
Succ = S
postulate
mod : (n : M) -> n == Succ(Succ n)
trunc : is-set M
M-ind : (C : M -> Set)
-> (a : C Zero)
-> (sC : (x : M) -> C x -> C (S x))
-> (p : (n : M) (c : C n) -> PathOver C (mod n) c (sC (Succ n) (sC n c)))
-> (t : (m : M) -> is-set (C m))
-> (x : M) -> C x
M-ind C a sC _ t Zero = a
M-ind C a sC p t (S x) = sC x (M-ind C a sC p t x)
postulate
M-ind-βmod : (C : M -> Set)
-> (a : C Zero)
-> (sC : (x : M) -> C x -> C (S x))
-> (p : (n : M) (c : C n) -> PathOver C (mod n) c (sC (Succ n) (sC n c)))
-> (t : (m : M) -> is-set (C m))
-> (n : M)
-> apd (M-ind C a sC p t) (mod n) == p n (M-ind C a sC p t n)
M-rec : {C : Set}
-> (a : C)
-> (sC : C -> C)
-> (p : (c : C) -> c == sC (sC c))
-> (t : is-set C)
-> M -> C
M-rec a sC _ _ Zero = a
M-rec a sC p t (S x) = sC (M-rec a sC p t x)
postulate
M-rec-βmod : {C : Set}
-> (a : C)
-> (sC : C -> C)
-> (p : (c : C) -> c == sC (sC c))
-> (t : is-set C)
-> (n : M)
-> ap (M-rec a sC p t) (mod n) == p (M-rec a sC p t n)

View File

@ -1,113 +0,0 @@
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import Mod2
module Thms where
paths_set : (A B : Set) (m : is-set B) (f g : A -> B) (a : A) -> is-set (f a == g a)
paths_set A B m f g a = \c₁ c₂ q₁ q₂ ->
prop-has-level-S
(contr-is-prop (m (f a) (g a) c₁ c₂))
q₁
q₂
trunc_paths : (A : Set) (Y : A -> Set) {x y : A} (p : x == y) (t : is-prop (Y x)) (c₁ : Y x) (c₂ : Y y) -> PathOver Y p c₁ c₂
trunc_paths A Y p t c₁ c₂ = from-transp! Y p ((prop-has-all-paths t) c₁ (transport! Y p c₂))
plus : M -> M -> M
plus n = M-rec
n
Succ
mod
trunc
plus_0n : (n : M) -> plus z n == n
plus_0n = M-ind
(\n -> plus z n == n)
idp
(\x -> \p -> ap Succ p)
(\x -> \c ->
trunc_paths M (\ n → plus z n == n) (mod x) (trunc (plus z x) x) c (ap Succ (ap Succ c))
)
(\m ->
paths_set M M trunc (\x -> plus z x) (\x -> x) m
)
plus_n0 : (n : M) -> plus n z == n
plus_n0 = M-ind
(\n -> plus n z == n)
idp
(\x p -> idp)
(\x c ->
trunc_paths M (\x -> plus x z == x) (mod x) (trunc x x) c idp
)
(\m -> paths_set M M trunc (\x -> plus x z) (\x -> x) m )
plus_Sn : (n m : M) -> plus (Succ n) m == Succ (plus n m)
plus_Sn n = M-ind
(\m -> plus (Succ n) m == Succ (plus n m))
idp
(\x p -> ap Succ p)
(\x c ->
trunc_paths M (\x -> plus (Succ n) x == Succ (plus n x)) (mod x) (trunc (plus (Succ n) x) (Succ (plus n x))) c (ap Succ (ap Succ c))
)
(\m -> paths_set M M trunc (\x -> plus (Succ x) m) (\x -> Succ(plus x m)) n)
plus_nS : (n m : M) -> plus n (Succ m) == Succ (plus n m)
plus_nS n m = idp
not : Bool -> Bool
not true = false
not false = true
not-not : (x : Bool) -> x == not (not x)
not-not true = idp
not-not false = idp
toBool : M -> Bool
toBool = M-rec
true
not
((\x -> not-not x))
Bool-is-set
toBoolS : (n : M) -> toBool (Succ n) == not (toBool n)
toBoolS = M-ind
(\n -> toBool (Succ n) == not (toBool n))
idp
(\x p -> idp)
(\n c ->
trunc_paths M (\x -> toBool (Succ x) == not (toBool x)) (mod n) (Bool-is-set (not (toBool n)) (not (toBool n))) c idp)
(\m -> paths_set M Bool Bool-is-set (\n -> toBool(Succ n)) (\n -> not(toBool n)) m)
fromBool : Bool -> M
fromBool true = z
fromBool false = Succ z
fromBoolNot : (b : Bool) -> fromBool (not b) == Succ (fromBool b)
fromBoolNot true = idp
fromBoolNot false = mod z
iso₁ : (b : Bool) -> toBool (fromBool b) == b
iso₁ true = idp
iso₁ false = idp
iso₂ : (n : M) -> fromBool (toBool n) == n
iso₂ = M-ind
(\n -> fromBool (toBool n) == n)
idp
(\x p ->
ap fromBool (toBoolS x)
∙ fromBoolNot (toBool x)
∙ ap Succ p)
(\n p -> trunc_paths M
(λ z₁ → fromBool (toBool z₁) == z₁)
(mod n)
(trunc (fromBool (toBool n)) n)
p
(ap fromBool (toBoolS (Succ n))
∙ fromBoolNot (toBool (Succ n))
∙ ap Succ (ap fromBool (toBoolS n) ∙ fromBoolNot (toBool n) ∙ ap Succ p))
)
(\m -> paths_set M M trunc (\n -> fromBool (toBool n)) (\n -> n) m)

View File

@ -18,6 +18,7 @@ fsets/monad.v
FSets.v FSets.v
Sub.v Sub.v
representations/T.v representations/T.v
implementations/interface.v
implementations/lists.v implementations/lists.v
variations/enumerated.v variations/enumerated.v
variations/k_finite.v variations/k_finite.v

View File

@ -0,0 +1,43 @@
Require Import HoTT.
Require Import FSets.
Section structure.
Variable (T : Type -> Type).
Class hasMembership : Type :=
member : forall A : Type, A -> T A -> hProp.
Class hasEmpty : Type :=
empty : forall A, T A.
Class hasSingleton : Type :=
singleton : forall A, A -> T A.
Class hasUnion : Type :=
union : forall A, T A -> T A -> T A.
Class hasComprehension : Type :=
filter : forall A, (A -> Bool) -> T A -> T A.
End structure.
Arguments member {_} {_} {_} _ _.
Arguments empty {_} {_} {_}.
Arguments singleton {_} {_} {_} _.
Arguments union {_} {_} {_} _ _.
Arguments filter {_} {_} {_} _ _.
Section interface.
Context `{Univalence}.
Variable (T : Type -> Type)
(f : forall A, T A -> FSet A).
Context `{hasMembership T, hasEmpty T, hasSingleton T, hasUnion T, hasComprehension T}.
Class sets :=
{
f_empty : forall A, f A empty = E ;
f_singleton : forall A a, f A (singleton a) = L a;
f_union : forall A X Y, f A (union X Y) = U (f A X) (f A Y);
f_filter : forall A ϕ X, f A (filter ϕ X) = comprehension ϕ (f A X);
f_member : forall A a X, member a X = isIn a (f A X)
}.
End interface.

View File

@ -1,113 +1,69 @@
(* Implementation of [FSet A] using lists *) (* Implementation of [FSet A] using lists *)
Require Import HoTT HitTactics. Require Import HoTT HitTactics.
Require Import representations.cons_repr FSets. Require Import FSets implementations.interface.
From fsets Require Import operations_cons_repr isomorphism length.
Section Operations. Section Operations.
Variable A : Type. Context `{Univalence}.
Context {A_deceq : DecidablePaths A}.
Fixpoint member (l : list A) (a : A) : Bool := Global Instance list_empty : hasEmpty list := fun A => nil.
Global Instance list_single : hasSingleton list := fun A a => cons a nil.
Global Instance list_union : hasUnion list.
Proof.
intros A l1 l2.
induction l1.
* apply l2.
* apply (cons a IHl1).
Defined.
Global Instance list_membership : hasMembership list.
Proof.
intros A.
intros a l.
induction l as [ | b l IHl].
- apply False_hp.
- apply (hor (a = b) IHl).
Defined.
Global Instance list_comprehension : hasComprehension list.
Proof.
intros A ϕ l.
induction l as [ | b l IHl].
- apply nil.
- apply (if ϕ b then cons b IHl else IHl).
Defined.
Fixpoint list_to_set A (l : list A) : FSet A :=
match l with match l with
| nil => false | nil => E
| cons b l => if (dec (a = b)) then true else member l a | cons a l => U (L a) (list_to_set A l)
end.
Fixpoint append (l1 l2 : list A) :=
match l1 with
| nil => l2
| cons a l => cons a (append l l2)
end.
Definition empty : list A := nil.
Definition singleton (a : A) : list A := cons a nil.
Fixpoint filter (ϕ : A -> Bool) (l : list A) : list A :=
match l with
| nil => nil
| cons a l => if ϕ a then cons a (filter ϕ l) else filter ϕ l
end.
Fixpoint cardinality (l : list A) : nat :=
match l with
| nil => 0
| cons a l => if member l a then cardinality l else 1 + cardinality l
end. end.
End Operations. End Operations.
Arguments nil {_}.
Arguments cons {_} _ _.
Arguments member {_} {_} _ _.
Arguments singleton {_} _.
Arguments append {_} _ _.
Arguments empty {_}.
Arguments filter {_} _ _.
Arguments cardinality {_} {_} _.
Section ListToSet. Section ListToSet.
Variable A : Type. Variable A : Type.
Context {A_deceq : DecidablePaths A} `{Univalence}. Context `{Univalence}.
Fixpoint list_to_setC (l : list A) : FSetC A := Lemma member_isIn (a : A) (l : list A) :
match l with member a l = isIn a (list_to_set A l).
| nil => Nil
| cons a l => Cns a (list_to_setC l)
end.
Definition list_to_set (l : list A) := FSetC_to_FSet(list_to_setC l).
Lemma list_to_setC_surj : forall X : FSetC A, Trunc (-1) ({l : list A & list_to_setC l = X}).
Proof. Proof.
hrecursion ; try (intros ; apply hprop_allpath ; apply (istrunc_truncation (-1) _)). induction l ; unfold member in * ; simpl in *.
- apply tr ; exists nil ; cbn. reflexivity.
- intros a x P.
simple refine (Trunc_rec _ P).
intros [l Q].
apply tr.
exists (cons a l).
simpl.
apply (ap (fun y => a;;y) Q).
Defined.
Lemma member_isIn (l : list A) (a : A) :
member l a = isIn_b a (FSetC_to_FSet (list_to_setC l)).
Proof.
induction l ; cbn in *.
- reflexivity. - reflexivity.
- destruct (dec (a = a0)) ; cbn. - rewrite IHl.
* rewrite ?p. simplify_isIn. reflexivity. unfold hor, merely, lor.
* rewrite IHl. simplify_isIn. rewrite L_isIn_b_false ; auto. apply path_iff_hprop ; intros z ; strip_truncations ; destruct z as [z1 | z2].
* apply (tr (inl (tr z1))).
* apply (tr (inr z2)).
* strip_truncations ; apply (tr (inl z1)).
* apply (tr (inr z2)).
Defined. Defined.
Lemma append_FSetCappend (l1 l2 : list A) : Definition empty_empty : list_to_set A empty = E := idpath.
list_to_setC (append l1 l2) = operations_cons_repr.append (list_to_setC l1) (list_to_setC l2).
Proof.
induction l1 ; simpl in *.
- reflexivity.
- apply (ap (fun y => a ;; y) IHl1).
Defined.
Lemma append_FSetappend (l1 l2 : list A) : Lemma filter_comprehension (ϕ : A -> Bool) (l : list A) :
list_to_set (append l1 l2) = U (list_to_set l1) (list_to_set l2). list_to_set A (filter ϕ l) = comprehension ϕ (list_to_set A l).
Proof.
induction l1 ; cbn in *.
- symmetry. apply nl.
- rewrite <- assoc.
refine (ap (fun y => U {|a|} y) _).
rewrite <- append_union.
rewrite <- append_FSetCappend.
reflexivity.
Defined.
Lemma empty_empty : list_to_set empty = E.
Proof.
reflexivity.
Defined.
Lemma filter_comprehension (l : list A) (ϕ : A -> Bool) :
list_to_set (filter ϕ l) = comprehension ϕ (list_to_set l).
Proof. Proof.
induction l ; cbn in *. induction l ; cbn in *.
- reflexivity. - reflexivity.
@ -118,32 +74,33 @@ Section ListToSet.
apply IHl. apply IHl.
Defined. Defined.
Lemma length_sizeC (l : list A) : Definition singleton_single (a : A) : list_to_set A (singleton a) = L a :=
cardinality l = length (list_to_setC l). nr (L a).
Proof.
induction l.
- cbn.
reflexivity.
- simpl.
rewrite IHl.
rewrite member_isIn.
reflexivity.
Defined.
Lemma length_size (l : list A) : Lemma append_union (l1 l2 : list A) :
cardinality l = length_FSet (list_to_set l). list_to_set A (union l1 l2) = U (list_to_set A l1) (list_to_set A l2).
Proof. Proof.
unfold length_FSet. induction l1 ; induction l2 ; cbn.
unfold list_to_set. - apply (union_idem _)^.
rewrite repr_iso_id_r. - apply (nl _)^.
apply length_sizeC. - rewrite IHl1.
apply assoc.
- rewrite IHl1.
cbn.
apply assoc.
Defined. Defined.
Lemma singleton_single (a : A) :
list_to_set (singleton a) = L a.
Proof.
cbn.
apply nr.
Defined.
End ListToSet. End ListToSet.
Section lists_are_sets.
Context `{Univalence}.
Instance lists_sets : sets list list_to_set.
Proof.
split ; intros.
- apply empty_empty.
- apply singleton_single.
- apply append_union.
- apply filter_comprehension.
- apply member_isIn.
Defined.
End lists_are_sets.