mirror of https://github.com/nmvdw/HITs-Examples
Simplified independence proof
This commit is contained in:
parent
40e1f45cfa
commit
dfd590724b
|
@ -43,18 +43,11 @@ Section isIn.
|
|||
Context `{Univalence}.
|
||||
Context {HS : closedSingleton C} {HIn : forall X, C X -> forall a, Decidable (X a)}.
|
||||
|
||||
Theorem decidable_A_isIn : forall a b : A, Decidable (Trunc (-1) (b = a)).
|
||||
Theorem decidable_A_isIn (a b : A) : Decidable (Trunc (-1) (b = a)).
|
||||
Proof.
|
||||
intros.
|
||||
unfold Decidable, closedSingleton in *.
|
||||
pose (HIn {|a|} (HS a) b).
|
||||
destruct s.
|
||||
- unfold singleton in t.
|
||||
left.
|
||||
apply t.
|
||||
- right.
|
||||
intro p.
|
||||
unfold singleton in n.
|
||||
destruct (HIn {|a|} (HS a) b).
|
||||
- apply (inl t).
|
||||
- refine (inr(fun p => _)).
|
||||
strip_truncations.
|
||||
contradiction (n (tr p)).
|
||||
Defined.
|
||||
|
@ -78,24 +71,17 @@ Section intersect.
|
|||
{HI : closedIntersection C} {HE : closedEmpty C}
|
||||
{HS : closedSingleton C} {HDE : hasDecidableEmpty C}.
|
||||
|
||||
Theorem decidable_A_intersect : forall a b : A, Decidable (Trunc (-1) (b = a)).
|
||||
Theorem decidable_A_intersect (a b : A) : Decidable (Trunc (-1) (b = a)).
|
||||
Proof.
|
||||
intros.
|
||||
unfold Decidable, closedEmpty, closedIntersection, closedSingleton, hasDecidableEmpty in *.
|
||||
unfold Decidable.
|
||||
pose (HI {|a|} {|b|} (HS a) (HS b)) as IntAB.
|
||||
pose (HDE ({|a|} ∪ {|b|}) IntAB) as IntE.
|
||||
refine (@Trunc_rec _ _ _ _ _ IntE) ; intros [p | p] ; unfold min_fun, singleton in p.
|
||||
- right.
|
||||
intro q.
|
||||
refine (Trunc_rec _ IntE) ; intros [p | p].
|
||||
- refine (inr(fun q => _)).
|
||||
strip_truncations.
|
||||
rewrite q in p.
|
||||
enough (a ∈ ∅) as X.
|
||||
{ apply X. }
|
||||
rewrite <- p.
|
||||
cbn.
|
||||
split ; apply (tr idpath).
|
||||
refine (transport (fun Z => a ∈ Z) p (tr idpath, tr q^)).
|
||||
- strip_truncations.
|
||||
destruct p as [a0 [t1 t2]].
|
||||
destruct p as [? [t1 t2]].
|
||||
strip_truncations.
|
||||
apply (inl (tr (t2^ @ t1))).
|
||||
Defined.
|
||||
|
|
Loading…
Reference in New Issue