mirror of https://github.com/nmvdw/HITs-Examples
Get rid of cow induction for the proof of `closedUnion Bfin`
This commit is contained in:
parent
e1a8220ba0
commit
eef533e345
|
@ -156,7 +156,7 @@ Section finite_hott.
|
|||
(Xequiv : {a : A & P a } <~> Fin n + Unit).
|
||||
|
||||
Definition split : exists P' : Sub A, exists b : A,
|
||||
({a : A & P' a} <~> Fin n) * (forall x, P x = P' x ∨ merely (x = b)).
|
||||
({a : A & P' a} <~> Fin n) * (forall x, P x = (P' x ∨ merely (x = b))).
|
||||
Proof.
|
||||
destruct Xequiv as [f [g fg gf adj]].
|
||||
unfold Sect in *.
|
||||
|
@ -369,109 +369,119 @@ Section cowd.
|
|||
Lemma kfin_is_bfin : @closedUnion A Bfin.
|
||||
Proof.
|
||||
intros X Y HX HY.
|
||||
pose (Xcow := (X; HX) : cow).
|
||||
pose (Ycow := (Y; HY) : cow).
|
||||
simple refine (cowy (fun C => Bfin (C.1 ∪ Y)) _ _ Xcow); simpl.
|
||||
- assert ((fun a => Trunc (-1) (Empty + Y a)) = (fun a => Y a)) as Help.
|
||||
{ apply path_forall. intros z; simpl.
|
||||
apply path_iff_ishprop.
|
||||
+ intros; strip_truncations; auto.
|
||||
destruct X0; auto. destruct e.
|
||||
+ intros ?. apply tr. right; assumption.
|
||||
(* TODO FIX THIS with sum_empty_l *)
|
||||
}
|
||||
rewrite Help. apply HY.
|
||||
- intros a [X' HX'] [n FX'Y]. strip_truncations.
|
||||
destruct (dec(a ∈ X')) as [HaX' | HaX'].
|
||||
* exists n. apply tr.
|
||||
transitivity ({a : A & Trunc (-1) (X' a + Y a)}); [| assumption ].
|
||||
apply equiv_functor_sigma_id. intro a'.
|
||||
apply equiv_iff_hprop.
|
||||
{ intros Q. strip_truncations.
|
||||
destruct Q as [Q | Q].
|
||||
- strip_truncations.
|
||||
apply tr. left.
|
||||
destruct Q ; auto.
|
||||
strip_truncations. rewrite t; assumption.
|
||||
- apply (tr (inr Q)). }
|
||||
{ intros Q. strip_truncations.
|
||||
destruct Q as [Q | Q]; apply tr.
|
||||
- left. apply tr. left. done.
|
||||
- right. done. }
|
||||
* destruct (dec (a ∈ Y)) as [HaY | HaY ].
|
||||
** exists n. apply tr.
|
||||
transitivity ({a : A & Trunc (-1) (X' a + Y a)}); [| assumption ].
|
||||
apply equiv_functor_sigma_id. intro a'.
|
||||
apply equiv_iff_hprop.
|
||||
{ intros Q. strip_truncations.
|
||||
destruct Q as [Q | Q].
|
||||
- strip_truncations.
|
||||
apply tr.
|
||||
destruct Q.
|
||||
left. auto.
|
||||
right. strip_truncations. rewrite t; assumption.
|
||||
- apply (tr (inr Q)). }
|
||||
{ intros Q. strip_truncations.
|
||||
destruct Q as [Q | Q]; apply tr.
|
||||
- left. apply tr. left. done.
|
||||
- right. done. }
|
||||
** exists (n.+1). apply tr.
|
||||
destruct FX'Y as [f [g Hfg Hgf adj]].
|
||||
unshelve esplit.
|
||||
{ intros [a' Ha']. cbn in Ha'.
|
||||
destruct (dec (BuildhProp (a' = a))) as [Ha'a | Ha'a].
|
||||
- right. apply tt.
|
||||
- left. refine (f (a';_)).
|
||||
destruct HX as [n fX].
|
||||
strip_truncations.
|
||||
revert fX. revert X.
|
||||
induction n; intros X fX.
|
||||
- destruct HY as [m fY]. strip_truncations.
|
||||
exists m. apply tr.
|
||||
transitivity {a : A & a ∈ Y}; [ | assumption ].
|
||||
apply equiv_functor_sigma_id.
|
||||
intros a.
|
||||
apply equiv_iff_hprop.
|
||||
* intros Ha. strip_truncations.
|
||||
destruct Ha as [Ha | Ha]; [ | apply Ha ].
|
||||
contradiction (fX (a;Ha)).
|
||||
* intros Ha. apply tr. by right.
|
||||
- destruct (split _ X n fX) as
|
||||
(X' & b & HX' & HX).
|
||||
assert (Bfin X') by (eexists; apply (tr HX')).
|
||||
destruct (dec (b ∈ X')) as [HX'b | HX'b].
|
||||
+ cut (X ∪ Y = X' ∪ Y).
|
||||
{ intros HXY. rewrite HXY.
|
||||
by apply IHn. }
|
||||
apply path_forall. intro a.
|
||||
unfold union, sub_union, lattice.max_fun.
|
||||
apply path_iff_hprop.
|
||||
* intros Ha.
|
||||
strip_truncations.
|
||||
destruct Ha as [HXa | HYa]; [ | apply tr; by right ].
|
||||
rewrite HX in HXa.
|
||||
strip_truncations.
|
||||
destruct HXa as [HX'a | Hab];
|
||||
[ | strip_truncations ]; apply tr; left.
|
||||
** done.
|
||||
** rewrite Hab. apply HX'b.
|
||||
* intros Ha.
|
||||
strip_truncations. apply tr.
|
||||
destruct Ha as [HXa | HYa]; [ left | by right ].
|
||||
rewrite HX. apply (tr (inl HXa)).
|
||||
+ (* b ∉ X' *)
|
||||
destruct (IHn X' HX') as [n' fw].
|
||||
strip_truncations.
|
||||
destruct (dec (b ∈ Y)) as [HYb | HYb].
|
||||
{ exists n'. apply tr.
|
||||
transitivity {a : A & a ∈ X' ∪ Y}; [ | apply fw ].
|
||||
apply equiv_functor_sigma_id. intro a.
|
||||
apply equiv_iff_hprop; cbn; simple refine (Trunc_rec _).
|
||||
{ intros [HXa | HYa].
|
||||
- rewrite HX in HXa.
|
||||
strip_truncations.
|
||||
destruct Ha' as [Ha' | Ha'].
|
||||
+ strip_truncations.
|
||||
destruct Ha' as [Ha' | Ha'].
|
||||
* apply (tr (inl Ha')).
|
||||
* strip_truncations. contradiction.
|
||||
+ apply (tr (inr Ha')). }
|
||||
{ apply isequiv_biinv; simpl.
|
||||
unshelve esplit; simpl.
|
||||
- unfold Sect; simpl.
|
||||
simple refine (_;_).
|
||||
{ destruct 1 as [M | ?].
|
||||
- destruct (g M) as [a' Ha'].
|
||||
exists a'.
|
||||
strip_truncations; apply tr.
|
||||
destruct Ha' as [Ha' | Ha'].
|
||||
+ left. apply (tr (inl Ha')).
|
||||
+ right. done.
|
||||
- exists a. apply (tr (inl (tr (inr (tr idpath))))). }
|
||||
{ intros [a' Ha']; simpl.
|
||||
strip_truncations.
|
||||
destruct Ha' as [HXa' | Haa']; simpl;
|
||||
destruct (dec (a' = a)); simpl.
|
||||
** apply path_sigma' with p^. apply path_ishprop.
|
||||
** rewrite Hgf; cbn. apply path_sigma' with idpath. apply path_ishprop.
|
||||
** apply path_sigma' with p^. apply path_ishprop.
|
||||
** rewrite Hgf; cbn. done. }
|
||||
- unfold Sect; simpl.
|
||||
simple refine (_;_).
|
||||
{ destruct 1 as [M | ?].
|
||||
- (* destruct (g M) as [a' Ha']. *)
|
||||
exists (g M).1.
|
||||
simple refine (Trunc_rec _ (g M).2).
|
||||
intros Ha'.
|
||||
apply tr.
|
||||
(* strip_truncations; apply tr. *)
|
||||
destruct Ha' as [Ha' | Ha'].
|
||||
+ left. apply (tr (inl Ha')).
|
||||
+ right. done.
|
||||
- exists a. apply (tr (inl (tr (inr (tr idpath))))). }
|
||||
simpl. intros [M | [] ].
|
||||
** destruct (dec (_ = a)) as [Haa' | Haa']; simpl.
|
||||
{ destruct (g M) as [a' Ha']. simpl in Haa'.
|
||||
strip_truncations.
|
||||
rewrite Haa' in Ha'. destruct Ha'; by contradiction. }
|
||||
{ f_ap. transitivity (f (g M)); [ | apply Hfg].
|
||||
f_ap. apply path_sigma' with idpath.
|
||||
apply path_ishprop. }
|
||||
** destruct (dec (a = a)); try by contradiction.
|
||||
reflexivity. }
|
||||
destruct HXa as [HX'a | Hab]; apply tr.
|
||||
* by left.
|
||||
* right. strip_truncations.
|
||||
rewrite Hab. apply HYb.
|
||||
- apply tr. by right. }
|
||||
{ intros [HX'a | HYa]; apply tr.
|
||||
* left. rewrite HX.
|
||||
apply (tr (inl HX'a)).
|
||||
* by right. } }
|
||||
{ exists (n'.+1).
|
||||
apply tr.
|
||||
unshelve eapply BuildEquiv.
|
||||
{ intros [a Ha]. cbn in Ha.
|
||||
destruct (dec (BuildhProp (a = b))) as [Hab | Hab].
|
||||
- right. apply tt.
|
||||
- left. refine (fw (a;_)).
|
||||
strip_truncations. apply tr.
|
||||
destruct Ha as [HXa | HYa].
|
||||
+ left. rewrite HX in HXa.
|
||||
strip_truncations.
|
||||
destruct HXa as [HX'a | Hab']; [apply HX'a |].
|
||||
strip_truncations. contradiction.
|
||||
+ right. apply HYa. }
|
||||
{ apply isequiv_biinv.
|
||||
unshelve esplit; cbn.
|
||||
- unshelve eexists.
|
||||
+ intros [m | []].
|
||||
* destruct (fw^-1 m) as [a Ha].
|
||||
exists a.
|
||||
strip_truncations. apply tr.
|
||||
destruct Ha as [HX'a | HYa]; [ left | by right ].
|
||||
rewrite HX.
|
||||
apply (tr (inl HX'a)).
|
||||
* exists b.
|
||||
rewrite HX.
|
||||
apply (tr (inl (tr (inr (tr idpath))))).
|
||||
+ intros [a Ha]; cbn.
|
||||
strip_truncations.
|
||||
simple refine (path_sigma' _ _ _); [ | apply path_ishprop ].
|
||||
destruct (H a b); cbn.
|
||||
* apply p^.
|
||||
* rewrite eissect; cbn.
|
||||
reflexivity.
|
||||
- unshelve eexists. (* TODO: Duplication!! *)
|
||||
+ intros [m | []].
|
||||
* exists (fw^-1 m).1.
|
||||
simple refine (Trunc_rec _ (fw^-1 m).2).
|
||||
intros [HX'a | HYa]; apply tr; [ left | by right ].
|
||||
rewrite HX.
|
||||
apply (tr (inl HX'a)).
|
||||
* exists b.
|
||||
rewrite HX.
|
||||
apply (tr (inl (tr (inr (tr idpath))))).
|
||||
+ intros [m | []]; cbn.
|
||||
destruct (dec (_ = b)) as [Hb | Hb]; cbn.
|
||||
{ destruct (fw^-1 m) as [a Ha]. simpl in Hb.
|
||||
simple refine (Trunc_rec _ Ha). clear Ha.
|
||||
rewrite Hb.
|
||||
intros [HX'b2 | HYb2]; contradiction. }
|
||||
{ f_ap. transitivity (fw (fw^-1 m)).
|
||||
- f_ap.
|
||||
apply path_sigma' with idpath.
|
||||
apply path_ishprop.
|
||||
- apply eisretr. }
|
||||
destruct (dec (b = b)); [ reflexivity | contradiction ]. } }
|
||||
Defined.
|
||||
|
||||
End cowd.
|
||||
|
|
Loading…
Reference in New Issue