Proof that the trunctation is really needed

If there is no 0-truncation then the resulting type is not an h-set.
This commit is contained in:
Dan Frumin 2017-06-21 14:10:59 +02:00
parent ab48ab4a75
commit f4d89f810c
2 changed files with 298 additions and 0 deletions

View File

@ -10,3 +10,4 @@ cons_repr.v
Lattice.v Lattice.v
monad.v monad.v
Lists.v Lists.v
bad.v

297
FiniteSets/bad.v Normal file
View File

@ -0,0 +1,297 @@
(* This is a /bad/ definition of FSets, without the 0-truncation.
Here we show that the resulting type is not an h-set. *)
Require Import HoTT.
Require Import HitTactics.
Module Export FSet.
Section FSet.
Variable A : Type.
Private Inductive FSet : Type :=
| E : FSet
| L : A -> FSet
| U : FSet -> FSet -> FSet.
Notation "{| x |}" := (L x).
Infix "" := U (at level 8, right associativity).
Notation "" := E.
Axiom assoc : forall (x y z : FSet ),
x (y z) = (x y) z.
Axiom comm : forall (x y : FSet),
x y = y x.
Axiom nl : forall (x : FSet),
x = x.
Axiom nr : forall (x : FSet),
x = x.
Axiom idem : forall (x : A),
{| x |} {|x|} = {|x|}.
End FSet.
Arguments E {_}.
Arguments U {_} _ _.
Arguments L {_} _.
Arguments assoc {_} _ _ _.
Arguments comm {_} _ _.
Arguments nl {_} _.
Arguments nr {_} _.
Arguments idem {_} _.
Section FSet_induction.
Variable A: Type.
Variable (P : FSet A -> Type).
Variable (eP : P E).
Variable (lP : forall a: A, P (L a)).
Variable (uP : forall (x y: FSet A), P x -> P y -> P (U x y)).
Variable (assocP : forall (x y z : FSet A)
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz)).
Variable (commP : forall (x y: FSet A) (px: P x) (py: P y),
comm x y #
uP x y px py = uP y x py px).
Variable (nlP : forall (x : FSet A) (px: P x),
nl x # uP E x eP px = px).
Variable (nrP : forall (x : FSet A) (px: P x),
nr x # uP x E px eP = px).
Variable (idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x).
(* Induction principle *)
Fixpoint FSet_ind
(x : FSet A)
{struct x}
: P x
:= (match x return _ -> _ -> _ -> _ -> _ -> P x with
| E => fun _ => fun _ => fun _ => fun _ => fun _ => eP
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
(FSet_ind y)
(FSet_ind z)
end) assocP commP nlP nrP idemP.
Axiom FSet_ind_beta_assoc : forall (x y z : FSet A),
apD FSet_ind (assoc x y z) =
(assocP x y z (FSet_ind x) (FSet_ind y) (FSet_ind z)).
Axiom FSet_ind_beta_comm : forall (x y : FSet A),
apD FSet_ind (comm x y) = (commP x y (FSet_ind x) (FSet_ind y)).
Axiom FSet_ind_beta_nl : forall (x : FSet A),
apD FSet_ind (nl x) = (nlP x (FSet_ind x)).
Axiom FSet_ind_beta_nr : forall (x : FSet A),
apD FSet_ind (nr x) = (nrP x (FSet_ind x)).
Axiom FSet_ind_beta_idem : forall (x : A), apD FSet_ind (idem x) = idemP x.
End FSet_induction.
Section FSet_recursion.
Variable A : Type.
Variable P : Type.
Variable e : P.
Variable l : A -> P.
Variable u : P -> P -> P.
Variable assocP : forall (x y z : P), u x (u y z) = u (u x y) z.
Variable commP : forall (x y : P), u x y = u y x.
Variable nlP : forall (x : P), u e x = x.
Variable nrP : forall (x : P), u x e = x.
Variable idemP : forall (x : A), u (l x) (l x) = l x.
Definition FSet_rec : FSet A -> P.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _) ; try (intros ; simple refine ((transport_const _ _) @ _)) ; cbn.
- apply e.
- apply l.
- intros x y ; apply u.
- apply assocP.
- apply commP.
- apply nlP.
- apply nrP.
- apply idemP.
Defined.
Definition FSet_rec_beta_assoc : forall (x y z : FSet A),
ap FSet_rec (assoc x y z)
=
assocP (FSet_rec x) (FSet_rec y) (FSet_rec z).
Proof.
intros.
unfold FSet_rec.
eapply (cancelL (transport_const (assoc x y z) _)).
simple refine ((apD_const _ _)^ @ _).
apply FSet_ind_beta_assoc.
Defined.
Definition FSet_rec_beta_comm : forall (x y : FSet A),
ap FSet_rec (comm x y)
=
commP (FSet_rec x) (FSet_rec y).
Proof.
intros.
unfold FSet_rec.
eapply (cancelL (transport_const (comm x y) _)).
simple refine ((apD_const _ _)^ @ _).
apply FSet_ind_beta_comm.
Defined.
Definition FSet_rec_beta_nl : forall (x : FSet A),
ap FSet_rec (nl x)
=
nlP (FSet_rec x).
Proof.
intros.
unfold FSet_rec.
eapply (cancelL (transport_const (nl x) _)).
simple refine ((apD_const _ _)^ @ _).
apply FSet_ind_beta_nl.
Defined.
Definition FSet_rec_beta_nr : forall (x : FSet A),
ap FSet_rec (nr x)
=
nrP (FSet_rec x).
Proof.
intros.
unfold FSet_rec.
eapply (cancelL (transport_const (nr x) _)).
simple refine ((apD_const _ _)^ @ _).
apply FSet_ind_beta_nr.
Defined.
Definition FSet_rec_beta_idem : forall (a : A),
ap FSet_rec (idem a)
=
idemP a.
Proof.
intros.
unfold FSet_rec.
eapply (cancelL (transport_const (idem a) _)).
simple refine ((apD_const _ _)^ @ _).
apply FSet_ind_beta_idem.
Defined.
End FSet_recursion.
Instance FSet_recursion A : HitRecursion (FSet A) := {
indTy := _; recTy := _;
H_inductor := FSet_ind A; H_recursor := FSet_rec A }.
End FSet.
Notation "{| x |}" := (L x).
Infix "" := U (at level 8, right associativity).
Notation "" := E.
Section set_sphere.
From HoTT.HIT Require Import Circle.
From HoTT Require Import UnivalenceAxiom.
Instance S1_recursion : HitRecursion S1 := {
indTy := _; recTy := _;
H_inductor := S1_ind; H_recursor := S1_rec }.
Variable A : Type.
Definition f (x : S1) : x = x.
Proof.
hrecursion x.
- exact loop.
- etransitivity.
eapply (@transport_paths_FlFr S1 S1 idmap idmap).
hott_simpl.
Defined.
Definition S1op (x y : S1) : S1.
Proof.
hrecursion y.
- exact x. (* x + base = x *)
- apply f.
Defined.
Lemma S1op_nr (x : S1) : S1op x base = x.
Proof. reflexivity. Defined.
Lemma S1op_nl (x : S1) : S1op base x = x.
Proof.
hrecursion x.
- exact loop.
- etransitivity.
apply (@transport_paths_FlFr _ _ (fun x => S1op base x) idmap _ _ loop loop).
hott_simpl.
apply moveR_pM. apply moveR_pM. hott_simpl.
etransitivity. apply (ap_V (S1op base) loop).
f_ap. apply S1_rec_beta_loop.
Defined.
Lemma S1op_assoc (x y z : S1) : S1op x (S1op y z) = S1op (S1op x y) z.
Proof.
hrecursion z.
- reflexivity.
- etransitivity.
apply (@transport_paths_FlFr _ _ (fun z => S1op x (S1op y z)) (S1op (S1op x y)) _ _ loop idpath).
hott_simpl.
apply moveR_Mp. hott_simpl.
rewrite S1_rec_beta_loop.
rewrite ap_compose.
rewrite S1_rec_beta_loop.
hrecursion y.
+ symmetry. apply S1_rec_beta_loop.
+ apply is1type_S1.
Qed.
Lemma S1op_comm (x y : S1) : S1op x y = S1op y x.
Proof.
hrecursion x.
- apply S1op_nl.
- hrecursion y.
+ rewrite transport_paths_FlFr. hott_simpl.
rewrite S1_rec_beta_loop. reflexivity.
+ apply is1type_S1.
Defined.
Definition FSet_to_S : FSet A -> S1.
Proof.
hrecursion.
- exact base.
- intro a. exact base.
- exact S1op.
- apply S1op_assoc.
- apply S1op_comm.
- apply S1op_nl.
- apply S1op_nr.
- simpl. reflexivity.
Defined.
Lemma FSet_S_ap : (nl (@E A)) = (nr E) -> idpath = loop.
Proof.
intros H.
enough (ap FSet_to_S (nl E) = ap FSet_to_S (nr E)) as H'.
- rewrite FSet_rec_beta_nl in H'.
rewrite FSet_rec_beta_nr in H'.
simpl in H'. unfold S1op_nr in H'.
exact H'^.
- f_ap.
Defined.
Lemma FSet_not_hset : IsHSet (FSet A) -> False.
Proof.
intros H.
enough (idpath = loop).
- assert (S1_encode _ idpath = S1_encode _ (loopexp loop (pos Int.one))) as H' by f_ap.
rewrite S1_encode_loopexp in H'. simpl in H'. symmetry in H'.
apply (pos_neq_zero H').
- apply FSet_S_ap.
apply set_path2.
Qed.
End set_sphere.