mirror of https://github.com/nmvdw/HITs-Examples
Simplified no union for Bishops
This commit is contained in:
parent
c9e6b35949
commit
fffdb87b4f
|
@ -64,9 +64,9 @@ Section finite_hott.
|
|||
Lemma no_union `{IsHSet A}
|
||||
(f : forall (X Y : Sub A),
|
||||
Bfin X -> Bfin Y -> Bfin (X ∪ Y))
|
||||
(a b : A) :
|
||||
hor (a = b) (a = b -> Empty).
|
||||
: MerelyDecidablePaths A.
|
||||
Proof.
|
||||
intros a b.
|
||||
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
|
||||
unfold Bfin in f.
|
||||
destruct f as [n pn].
|
||||
|
@ -78,7 +78,7 @@ Section finite_hott.
|
|||
exists a. apply (tr(inl(tr idpath))).
|
||||
- destruct n as [|n].
|
||||
+ (* If the size of the union is 1, then (a = b) *)
|
||||
refine (tr (inl _)).
|
||||
refine (inl (tr _)).
|
||||
pose (s1 := (a;tr(inl(tr idpath)))
|
||||
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
|
||||
pose (s2 := (b;tr(inr(tr idpath)))
|
||||
|
@ -88,8 +88,8 @@ Section finite_hott.
|
|||
{ by apply path_ishprop. }
|
||||
refine (ap (fun x => (g x).1) fs_eq).
|
||||
+ (* Otherwise, ¬(a = b) *)
|
||||
refine (tr (inr _)).
|
||||
intros p.
|
||||
refine (inr (fun p => _)).
|
||||
strip_truncations.
|
||||
pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
|
||||
pose (s2 := inr tt : Fin n + Unit + Unit).
|
||||
pose (gs1 := g s1).
|
||||
|
@ -99,37 +99,35 @@ Section finite_hott.
|
|||
assert (Hgs1 : gs1 = c) by reflexivity.
|
||||
assert (Hgs2 : gs2 = d) by reflexivity.
|
||||
destruct c as [x px'].
|
||||
destruct d as [y py'].
|
||||
simple refine (Trunc_ind _ _ px') ; intros px.
|
||||
simple refine (Trunc_ind _ _ py') ; intros py.
|
||||
simpl.
|
||||
destruct d as [y py'].
|
||||
simple refine (Trunc_ind _ _ px') ; intros px
|
||||
; simple refine (Trunc_ind _ _ py') ; intros py ; simpl.
|
||||
cut (x = y).
|
||||
{
|
||||
enough (s1 = s2) as X.
|
||||
{
|
||||
intros.
|
||||
unfold s1, s2 in X.
|
||||
refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
|
||||
+ apply tt.
|
||||
+ rewrite X ; apply tt.
|
||||
contradiction (inl_ne_inr _ _ X).
|
||||
}
|
||||
transitivity (f gs1).
|
||||
{ apply (fg s1)^. }
|
||||
symmetry ; transitivity (f gs2).
|
||||
{ apply (fg s2)^. }
|
||||
unfold gs1, gs2 in *.
|
||||
refine ((fg s1)^ @ _ @ fg s2).
|
||||
rewrite Hgs1, Hgs2.
|
||||
f_ap.
|
||||
simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
|
||||
destruct px as [p1 | p1] ; destruct py as [p2 | p2] ; strip_truncations.
|
||||
* apply (p2 @ p1^).
|
||||
* refine (p2 @ _^ @ p1^). auto.
|
||||
* refine (p2 @ _ @ p1^). auto.
|
||||
* apply (p2 @ p1^).
|
||||
destruct px as [px | px] ; destruct py as [py | py]
|
||||
; refine (Trunc_rec _ px) ; clear px ; intro px
|
||||
; refine (Trunc_rec _ py) ; clear py ; intro py.
|
||||
* apply (px @ py^).
|
||||
* refine (px @ _ @ py^). auto.
|
||||
* refine (px @ _^ @ py^). auto.
|
||||
* apply (px @ py^).
|
||||
}
|
||||
destruct px as [px | px] ; destruct py as [py | py]; strip_truncations.
|
||||
destruct px as [px | px] ; destruct py as [py | py]
|
||||
; refine (Trunc_rec _ px) ; clear px ; intro px
|
||||
; refine (Trunc_rec _ py) ; clear py ; intro py.
|
||||
** apply (px @ py^).
|
||||
** refine (px @ _ @ py^). auto.
|
||||
** refine (px @ _ @ py^). symmetry. auto.
|
||||
** refine (px @ _^ @ py^). auto.
|
||||
** apply (px @ py^).
|
||||
Defined.
|
||||
End finite_hott.
|
||||
|
|
Loading…
Reference in New Issue