Require Import HoTT. Require Import HitTactics. Require Import definition. Require Import operations. Require Import properties. Require Import empty_set. Class Antisymmetric {A} (R : relation A) := antisymmetry : forall x y, R x y -> R y x -> x = y. Class Total {A} (R : relation A) := total : forall x y, x = y \/ R x y \/ R y x. Class TotalOrder {A} (R : relation A) := { TotalOrder_Reflexive : Reflexive R | 2 ; TotalOrder_Antisymmetric : Antisymmetric R | 2; TotalOrder_Transitive : Transitive R | 2; TotalOrder_Total : Total R | 2; }. Context {A : Type0}. Context {A_deceq : DecidablePaths A}. Context {R: relation A}. Context {A_ordered : TotalOrder R}. Ltac eq_neq_tac := match goal with | [ H: ?x <> E, H': ?x = E |- _ ] => destruct H; assumption end. Ltac destruct_match_1 := repeat match goal with | [|- match ?X with | _ => _ end ] => destruct X | [|- ?X = ?Y ] => apply path_ishprop | [ H: ?x <> E |- Empty ] => destruct H | [ H1: ?x = E, H2: ?y = E, H3: ?w ∪ ?q = E |- ?r = E] => rewrite H1, H2 in H3; rewrite nl in H3; rewrite nl in H3 end. Lemma transport_dom_eq (D1 D2 C: Type) (P: D1 = D2) (f: D1 -> C) : transport (fun T: Type => T -> C) P f = fun y => f (transport (fun X => X) P^ y). Proof. induction P. hott_simpl. Defined. Lemma transport_dom_eq_gen (Ty: Type) (D1 D2: Ty) (C: Type) (P: D1 = D2) (Q : Ty -> Type) (f: Q D1 -> C) : transport (fun X: Ty => Q X -> C) P f = fun y => f (transport Q P^ y). Proof. induction P. hott_simpl. Defined. Lemma min {HFun: Funext} (x: FSet A): x <> ∅ -> A. Proof. hrecursion x. - intro H. destruct H. reflexivity. - intros. exact a. - intros x y rx ry H. apply union_non_empty' in H. destruct H. + destruct p. specialize (rx fst). exact rx. + destruct s. * destruct p. specialize (ry snd). exact ry. * destruct p. specialize (rx fst). specialize (ry snd). destruct (TotalOrder_Total rx ry) as [Heq | [ Hx | Hy ]]. ** exact rx. ** exact rx. ** exact ry. - intros. rewrite transport_dom_eq_gen. apply path_forall. intro y0. destruct ( union_non_empty' x y ∪ z (transport (fun X : FSet A => X <> ∅) (assoc x y z)^ y0)) as [[ G1 G2] | [[ G3 G4] | [G5 G6]]]. + pose (G2' := G2). apply eset_union_lr in G2'; destruct G2'. cbn. destruct (union_non_empty' x ∪ y z y0) as [[H'x H'y] | [ [H'a H'b] | [H'c H'd]]]; try eq_neq_tac. destruct (union_non_empty' x y H'x). ** destruct p. assert (G1 = fst0). apply path_forall. intro. apply path_ishprop. rewrite X. reflexivity. ** destruct s; destruct p; eq_neq_tac. + destruct (union_non_empty' y z G4) as [[H'x H'y] | [ [H'a H'b] | [H'c H'd]]]; try eq_neq_tac. destruct (union_non_empty' x ∪ y z y0). ** destruct p. cbn. destruct (union_non_empty' x y fst). *** destruct p; eq_neq_tac. *** destruct s. destruct p. **** assert (H'x = snd0). apply path_forall. intro. apply path_ishprop. rewrite X. reflexivity. **** destruct p. eq_neq_tac. ** destruct s; destruct p; try eq_neq_tac. ** destruct (union_non_empty' x ∪ y z y0). *** destruct p. eq_neq_tac. *** destruct s. destruct p. **** assert (H'b = snd). apply path_forall. intro. apply path_ishprop. rewrite X. reflexivity. **** destruct p. assert (x ∪ y = E). rewrite H'a, G3. apply union_idem. eq_neq_tac. ** cbn. destruct (TotalOrder_Total (py H'c) (pz H'd)). *** destruct (union_non_empty' x ∪ y z y0). **** destruct p0. eq_neq_tac. **** destruct s. ***** destruct p0. rewrite G3, nl in fst. eq_neq_tac. ***** destruct p0. destruct (union_non_empty' x y fst). ****** destruct p0. eq_neq_tac. ****** destruct s. ******* destruct p0. destruct (TotalOrder_Total (py snd0) (pz snd)). f_ap. apply path_forall. intro. apply path_ishprop. destruct s. f_ap. apply path_forall. intro. apply path_ishprop. rewrite p. f_ap. apply path_forall. intro. apply path_ishprop. ******* destruct p0. eq_neq_tac. *** destruct (union_non_empty' x ∪ y z y0). **** destruct p. eq_neq_tac. **** destruct s0. destruct p. rewrite comm in fst. apply eset_union_l in fst. eq_neq_tac. destruct p. destruct (union_non_empty' x y fst). ***** destruct p; eq_neq_tac. ***** destruct s0. destruct p. destruct (TotalOrder_Total (py snd0) (pz snd)); destruct s; try (f_ap; apply path_forall; intro; apply path_ishprop). rewrite p. f_ap; apply path_forall; intro; apply path_ishprop. destruct s0. f_ap; apply path_forall; intro; apply path_ishprop. assert (snd0 = H'c). apply path_forall; intro; apply path_ishprop. assert (snd = H'd). apply path_forall; intro; apply path_ishprop. rewrite <- X0 in r. rewrite X in r0. apply TotalOrder_Antisymmetric; assumption. destruct s0. assert (snd0 = H'c). apply path_forall; intro; apply path_ishprop. assert (snd = H'd). apply path_forall; intro; apply path_ishprop. rewrite <- X in r. rewrite X0 in r0. apply TotalOrder_Antisymmetric; assumption. f_ap; apply path_forall; intro; apply path_ishprop. destruct p; eq_neq_tac. + cbn. destruct (union_non_empty' y z G6). ** destruct p. destruct ( union_non_empty' x ∪ y z y0). *** destruct p. destruct (union_non_empty' x y fst0). **** destruct p; eq_neq_tac. **** destruct s; destruct p. eq_neq_tac. assert (fst1 = G5). apply path_forall; intro; apply path_ishprop. assert (fst = snd1). apply path_forall; intro; apply path_ishprop. rewrite X, X0. destruct (TotalOrder_Total (px G5) (py snd1)). reflexivity. destruct s; reflexivity. *** destruct s; destruct p; eq_neq_tac. ** destruct (union_non_empty' x ∪ y z y0). *** destruct p. destruct s; destruct p; eq_neq_tac. *** destruct s. destruct p. destruct s0. destruct p. apply eset_union_l in fst0. eq_neq_tac. **** destruct p. assert (snd = snd0). apply path_forall; intro; apply path_ishprop. destruct (union_non_empty' x y fst0). destruct p. assert (fst1 = G5). apply path_forall; intro; apply path_ishprop. assert (fst = snd1). apply set_path2. ***** rewrite X0. rewrite <- X. reflexivity. ***** destruct s; destruct p; eq_neq_tac. **** destruct s0. destruct p0. destruct p. ***** apply eset_union_l in fst. eq_neq_tac. ***** destruct p, p0. assert (snd0 = snd). apply path_forall; intro; apply path_ishprop. rewrite X. destruct (union_non_empty' x y fst0). destruct p; eq_neq_tac. destruct s. destruct p; eq_neq_tac. destruct p. assert (fst = snd1). apply path_forall; intro; apply path_ishprop. assert (fst1 = G5). apply path_forall; intro; apply path_ishprop. rewrite <- X0. rewrite X1. destruct (TotalOrder_Total (py fst) (pz snd)). ****** rewrite <- p. destruct (TotalOrder_Total (px G5) (py fst)). rewrite <- p0. destruct (TotalOrder_Total (px G5) (px G5)). reflexivity. destruct s; reflexivity. destruct s. destruct (TotalOrder_Total (px G5) (py fst)). reflexivity. destruct s. reflexivity. apply TotalOrder_Antisymmetric; assumption. destruct (TotalOrder_Total (py fst) (py fst)). reflexivity. destruct s; reflexivity. ****** destruct s. destruct (TotalOrder_Total (px G5) (py fst)). destruct (TotalOrder_Total (px G5) (pz snd)). reflexivity. destruct s. reflexivity. rewrite <- p in r. apply TotalOrder_Antisymmetric; assumption. destruct s. destruct ( TotalOrder_Total (px G5) (pz snd)). reflexivity. destruct s. reflexivity. apply (TotalOrder_Transitive (px G5)) in r. apply TotalOrder_Antisymmetric; assumption. assumption. destruct (TotalOrder_Total (py fst) (pz snd)). reflexivity. destruct s. reflexivity. apply TotalOrder_Antisymmetric; assumption. ******* destruct ( TotalOrder_Total (px G5) (py fst)). reflexivity. destruct s. destruct (TotalOrder_Total (px G5) (pz snd)). reflexivity. destruct s; reflexivity. destruct ( TotalOrder_Total (px G5) (pz snd)). rewrite <- p. destruct (TotalOrder_Total (py fst) (px G5)). apply symmetry; assumption. destruct s. rewrite <- p in r. apply TotalOrder_Antisymmetric; assumption. reflexivity. destruct s. assert ((py fst) = (pz snd)). apply TotalOrder_Antisymmetric. apply (TotalOrder_Transitive (py fst) (px G5)); assumption. assumption. rewrite X2. assert (px G5 = pz snd). apply TotalOrder_Antisymmetric. assumption. apply (TotalOrder_Transitive (pz snd) (py fst)); assumption. rewrite X3. destruct ( TotalOrder_Total (pz snd) (pz snd)). reflexivity. destruct s; reflexivity. destruct (TotalOrder_Total (py fst) (pz snd)). apply TotalOrder_Antisymmetric. assumption. rewrite p. apply (TotalOrder_Reflexive). destruct s. apply TotalOrder_Antisymmetric; assumption. reflexivity. - intros. rewrite transport_dom_eq_gen. apply path_forall. intro y0. cbn. destruct (union_non_empty' x y (transport (fun X : FSet A => X <> ∅) (comm x y)^ y0)) as [[Hx Hy] | [ [Ha Hb] | [Hc Hd]]]; destruct (union_non_empty' y x y0) as [[H'x H'y] | [ [H'a H'b] | [H'c H'd]]]; try (eq_neq_tac). assert (Hx = H'b). apply path_forall. intro. apply path_ishprop. rewrite X. reflexivity. assert (Hb = H'x). apply path_forall. intro. apply path_ishprop. rewrite X. reflexivity. assert (Hd = H'c). apply path_forall. intro. apply path_ishprop. rewrite X. assert (H'd = Hc). apply path_forall. intro. apply path_ishprop. rewrite X0. rewrite <- X. destruct (TotalOrder_Total (px Hc) (py Hd)) as [G1 | [G2 | G3]]; destruct (TotalOrder_Total (py Hd) (px Hc)) as [T1 | [T2 | T3]]; try (assumption); try (reflexivity); try (apply symmetry; assumption); try (apply TotalOrder_Antisymmetric; assumption). - intros. rewrite transport_dom_eq_gen. apply path_forall. intro y. destruct (union_non_empty' ∅ x (transport (fun X : FSet A => X <> ∅) (nl x)^ y)). destruct p. eq_neq_tac. destruct s. destruct p. assert (y = snd). apply path_forall. intro. apply path_ishprop. rewrite X. reflexivity. destruct p. destruct fst. - intros. rewrite transport_dom_eq_gen. apply path_forall. intro y. destruct (union_non_empty' x ∅ (transport (fun X : FSet A => X <> ∅) (nr x)^ y)). destruct p. assert (y = fst). apply path_forall. intro. apply path_ishprop. rewrite X. reflexivity. destruct s. destruct p. eq_neq_tac. destruct p. destruct snd. - intros. rewrite transport_dom_eq_gen. apply path_forall. intro y. destruct ( union_non_empty' {|x|} {|x|} (transport (fun X : FSet A => X <> ∅) (idem x)^ y)). reflexivity. destruct s. reflexivity. destruct p. cbn. destruct (TotalOrder_Total x x). reflexivity. destruct s; reflexivity. Defined. Definition minfset {HFun: Funext} : FSet A -> { Y: (FSet A) & (Y = E) + { a: A & Y = L a } }. intro X. hinduction X. - exists E. left. reflexivity. - intro a. exists (L a). right. exists a. reflexivity. - intros IH1 IH2. destruct IH1 as [R1 HR1]. destruct IH2 as [R2 HR2]. destruct HR1. destruct HR2. exists E; left. reflexivity. destruct s as [a Ha]. exists (L a). right. exists a. reflexivity. destruct HR2. destruct s as [a Ha]. exists (L a). right. exists a. reflexivity. destruct s as [a1 Ha1]. destruct s0 as [a2 Ha2]. assert (a1 = a2 \/ R a1 a2 \/ R a2 a1). apply TotalOrder_Total. destruct X. exists (L a1). right. exists a1. reflexivity. destruct s. exists (L a1). right. exists a1. reflexivity. exists (L a2). right. exists a2. reflexivity. - cbn. intros R1 R2 R3. destruct R1 as [Res1 HR1]. destruct HR1 as [HR1E | HR1S]. destruct R2 as [Res2 HR2]. destruct HR2 as [HR2E | HR2S]. destruct R3 as [Res3 HR3]. destruct HR3 as [HR3E | HR3S]. + cbn. reflexivity. + cbn. reflexivity. + cbn. destruct R3 as [Res3 HR3]. destruct HR3 as [HR3E | HR3S]. * cbn. reflexivity. * destruct HR2S as [a2 Ha2]. destruct HR3S as [a3 Ha3]. destruct (TotalOrder_Total a2 a3). ** cbn. reflexivity. ** destruct s. cbn. reflexivity. cbn. reflexivity. + destruct HR1S as [a1 Ha1]. destruct R2 as [Res2 HR2]. destruct HR2 as [HR2E | HR2S]. destruct R3 as [Res3 HR3]. destruct HR3 as [HR3E | HR3S]. * cbn. reflexivity. * destruct HR3S as [a3 Ha3]. destruct (TotalOrder_Total a1 a3). reflexivity. destruct s; reflexivity. * destruct HR2S as [a2 Ha2]. destruct R3 as [Res3 HR3]. destruct HR3 as [HR3E | HR3S]. cbn. destruct (TotalOrder_Total a1 a2). cbn. reflexivity. destruct s. cbn. reflexivity. cbn. reflexivity. destruct HR3S as [a3 Ha3]. destruct (TotalOrder_Total a2 a3). ** rewrite p. destruct (TotalOrder_Total a1 a3). rewrite p0. destruct ( TotalOrder_Total a3 a3). reflexivity. destruct s; reflexivity. destruct s. cbn. destruct (TotalOrder_Total a1 a3). reflexivity. destruct s. reflexivity. assert (a1 = a3). apply TotalOrder_Antisymmetric; assumption. rewrite X. reflexivity. cbn. destruct (TotalOrder_Total a3 a3). reflexivity. destruct s; reflexivity. ** destruct s. *** cbn. destruct (TotalOrder_Total a1 a2). cbn. destruct (TotalOrder_Total a1 a3). reflexivity. destruct s. reflexivity. rewrite <- p in r. assert (a1 = a3). apply TotalOrder_Antisymmetric; assumption. rewrite X. reflexivity. destruct s. cbn. destruct (TotalOrder_Total a1 a3). reflexivity. destruct s. reflexivity. assert (R a1 a3). apply (TotalOrder_Transitive a1 a2); assumption. assert (a1 = a3). apply TotalOrder_Antisymmetric; assumption. rewrite X0. reflexivity. cbn. destruct (TotalOrder_Total a2 a3). reflexivity. destruct s. reflexivity. assert (a2 = a3). apply TotalOrder_Antisymmetric; assumption. rewrite X. reflexivity. *** cbn. destruct (TotalOrder_Total a1 a3). rewrite p. destruct (TotalOrder_Total a3 a2). cbn. destruct (TotalOrder_Total a3 a3). reflexivity. destruct s; reflexivity. destruct s. cbn. destruct (TotalOrder_Total a3 a3). reflexivity. destruct s; reflexivity. cbn. destruct (TotalOrder_Total a2 a3). rewrite p0. reflexivity. destruct s. assert (a2 = a3). apply TotalOrder_Antisymmetric; assumption. rewrite X. reflexivity. reflexivity. destruct s. cbn. destruct (TotalOrder_Total a1 a2). cbn. destruct (TotalOrder_Total a1 a3). reflexivity. assert (a1 = a3). apply TotalOrder_Antisymmetric. assumption. rewrite <- p in r. assumption. destruct s. reflexivity. rewrite X. reflexivity. destruct s. cbn. destruct (TotalOrder_Total a1 a3). reflexivity. destruct s. reflexivity. assert (a1 = a3). apply TotalOrder_Antisymmetric; assumption. rewrite X. reflexivity. cbn. destruct (TotalOrder_Total a2 a3). rewrite p in r1. assert (a2 = a1). transitivity a3. assumption. apply TotalOrder_Antisymmetric; assumption. rewrite X. reflexivity. destruct s. assert (a1 = a2). apply TotalOrder_Antisymmetric. apply (TotalOrder_Transitive a1 a3); assumption. assumption. rewrite X. reflexivity. assert (a1 = a3). apply TotalOrder_Antisymmetric. assumption. apply (TotalOrder_Transitive a3 a2); assumption. rewrite X. reflexivity. destruct ( TotalOrder_Total a1 a2). cbn. destruct (TotalOrder_Total a1 a3). rewrite p0. reflexivity. destruct s. assert (a1 = a3). apply TotalOrder_Antisymmetric; assumption. rewrite X. reflexivity. reflexivity. destruct s. cbn. destruct (TotalOrder_Total a1 a3 ). rewrite p. reflexivity. destruct s. assert (a1 = a3). apply TotalOrder_Antisymmetric; assumption. rewrite X. reflexivity. reflexivity. cbn. destruct (TotalOrder_Total a1 a3 ). assert (a2 = a3). rewrite p in r1. apply TotalOrder_Antisymmetric; assumption. rewrite X. destruct (TotalOrder_Total a3 a3). reflexivity. destruct s; reflexivity. destruct s. destruct (TotalOrder_Total a2 a3). rewrite p. reflexivity. destruct s. assert (a2 = a3). apply TotalOrder_Antisymmetric; assumption. rewrite X. reflexivity. reflexivity. cbn. destruct (TotalOrder_Total a2 a3). rewrite p. reflexivity. destruct s. assert (a2 = a3). apply TotalOrder_Antisymmetric; assumption. rewrite X. reflexivity. reflexivity. - cbn. intros R1 R2. destruct R1 as [La1 HR1]. destruct HR1 as [HR1E | HR1S]. destruct R2 as [La2 HR2]. destruct HR2 as [HR2E | HR2S]. reflexivity. reflexivity. destruct R2 as [La2 HR2]. destruct HR2 as [HR2E | HR2S]. reflexivity. destruct HR1S as [a1 Ha1]. destruct HR2S as [a2 Ha2]. destruct (TotalOrder_Total a1 a2). rewrite p. destruct (TotalOrder_Total a2 a2). reflexivity. destruct s; reflexivity. destruct s. destruct (TotalOrder_Total a2 a1). rewrite p. reflexivity. destruct s. assert (a1 = a2). apply TotalOrder_Antisymmetric; assumption. rewrite X. reflexivity. reflexivity. destruct (TotalOrder_Total a2 a1). rewrite p. reflexivity. destruct s. reflexivity. assert (a1 = a2). apply TotalOrder_Antisymmetric; assumption. rewrite X. reflexivity. - cbn. intro R. destruct R as [La HR]. destruct HR. rewrite <- p. reflexivity. destruct s as [a1 H]. apply (path_sigma' _ H^). rewrite transport_sum. f_ap. rewrite transport_sigma. simpl. simple refine (path_sigma' _ _ _ ). apply transport_const. apply set_path2. - intros R. cbn. destruct R as [ R HR]. destruct HR as [HE | Ha ]. rewrite <- HE. reflexivity. destruct Ha as [a Ha]. apply (path_sigma' _ Ha^). rewrite transport_sum. f_ap. rewrite transport_sigma. simpl. simple refine (path_sigma' _ _ _ ). apply transport_const. apply set_path2. - cbn. intro. destruct (TotalOrder_Total x x). reflexivity. destruct s. reflexivity. reflexivity. Defined.