Require Import HoTT. Require Import HitTactics. Module Export FSet. Section FSet. Variable A : Type. Private Inductive FSet : Type := | E : FSet | L : A -> FSet | U : FSet -> FSet -> FSet. Notation "{| x |}" := (L x). Infix "∪" := U (at level 8, right associativity). Notation "∅" := E. Axiom assoc : forall (x y z : FSet ), x ∪ (y ∪ z) = (x ∪ y) ∪ z. Axiom comm : forall (x y : FSet), x ∪ y = y ∪ x. Axiom nl : forall (x : FSet), ∅ ∪ x = x. Axiom nr : forall (x : FSet), x ∪ ∅ = x. Axiom idem : forall (x : A), {| x |} ∪ {|x|} = {|x|}. Axiom trunc : IsHSet FSet. End FSet. Arguments E {_}. Arguments U {_} _ _. Arguments L {_} _. Arguments assoc {_} _ _ _. Arguments comm {_} _ _. Arguments nl {_} _. Arguments nr {_} _. Arguments idem {_} _. Section FSet_induction. Variable A: Type. Variable (P : FSet A -> Type). Variable (H : forall a : FSet A, IsHSet (P a)). Variable (eP : P E). Variable (lP : forall a: A, P (L a)). Variable (uP : forall (x y: FSet A), P x -> P y -> P (U x y)). Variable (assocP : forall (x y z : FSet A) (px: P x) (py: P y) (pz: P z), assoc x y z # (uP x (U y z) px (uP y z py pz)) = (uP (U x y) z (uP x y px py) pz)). Variable (commP : forall (x y: FSet A) (px: P x) (py: P y), comm x y # uP x y px py = uP y x py px). Variable (nlP : forall (x : FSet A) (px: P x), nl x # uP E x eP px = px). Variable (nrP : forall (x : FSet A) (px: P x), nr x # uP x E px eP = px). Variable (idemP : forall (x : A), idem x # uP (L x) (L x) (lP x) (lP x) = lP x). (* Induction principle *) Fixpoint FSet_ind (x : FSet A) {struct x} : P x := (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with | E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => eP | L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => lP a | U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z (FSet_ind y) (FSet_ind z) end) H assocP commP nlP nrP idemP. Axiom FSet_ind_beta_assoc : forall (x y z : FSet A), apD FSet_ind (assoc x y z) = (assocP x y z (FSet_ind x) (FSet_ind y) (FSet_ind z)). Axiom FSet_ind_beta_comm : forall (x y : FSet A), apD FSet_ind (comm x y) = (commP x y (FSet_ind x) (FSet_ind y)). Axiom FSet_ind_beta_nl : forall (x : FSet A), apD FSet_ind (nl x) = (nlP x (FSet_ind x)). Axiom FSet_ind_beta_nr : forall (x : FSet A), apD FSet_ind (nr x) = (nrP x (FSet_ind x)). Axiom FSet_ind_beta_idem : forall (x : A), apD FSet_ind (idem x) = idemP x. End FSet_induction. Section FSet_recursion. Variable A : Type. Variable P : Type. Variable H: IsHSet P. Variable e : P. Variable l : A -> P. Variable u : P -> P -> P. Variable assocP : forall (x y z : P), u x (u y z) = u (u x y) z. Variable commP : forall (x y : P), u x y = u y x. Variable nlP : forall (x : P), u e x = x. Variable nrP : forall (x : P), u x e = x. Variable idemP : forall (x : A), u (l x) (l x) = l x. Definition FSet_rec : FSet A -> P. Proof. simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; simple refine ((transport_const _ _) @ _)) ; cbn. - apply e. - apply l. - intros x y ; apply u. - apply assocP. - apply commP. - apply nlP. - apply nrP. - apply idemP. Defined. Definition FSet_rec_beta_assoc : forall (x y z : FSet A), ap FSet_rec (assoc x y z) = assocP (FSet_rec x) (FSet_rec y) (FSet_rec z). Proof. intros. unfold FSet_rec. eapply (cancelL (transport_const (assoc x y z) _)). simple refine ((apD_const _ _)^ @ _). apply FSet_ind_beta_assoc. Defined. Definition FSet_rec_beta_comm : forall (x y : FSet A), ap FSet_rec (comm x y) = commP (FSet_rec x) (FSet_rec y). Proof. intros. unfold FSet_rec. eapply (cancelL (transport_const (comm x y) _)). simple refine ((apD_const _ _)^ @ _). apply FSet_ind_beta_comm. Defined. Definition FSet_rec_beta_nl : forall (x : FSet A), ap FSet_rec (nl x) = nlP (FSet_rec x). Proof. intros. unfold FSet_rec. eapply (cancelL (transport_const (nl x) _)). simple refine ((apD_const _ _)^ @ _). apply FSet_ind_beta_nl. Defined. Definition FSet_rec_beta_nr : forall (x : FSet A), ap FSet_rec (nr x) = nrP (FSet_rec x). Proof. intros. unfold FSet_rec. eapply (cancelL (transport_const (nr x) _)). simple refine ((apD_const _ _)^ @ _). apply FSet_ind_beta_nr. Defined. Definition FSet_rec_beta_idem : forall (a : A), ap FSet_rec (idem a) = idemP a. Proof. intros. unfold FSet_rec. eapply (cancelL (transport_const (idem a) _)). simple refine ((apD_const _ _)^ @ _). apply FSet_ind_beta_idem. Defined. End FSet_recursion. Instance FSet_recursion A : HitRecursion (FSet A) := { indTy := _; recTy := _; H_inductor := FSet_ind A; H_recursor := FSet_rec A }. End FSet.