Require Import HoTT. Definition lor (X Y : hProp) : hProp := BuildhProp (Trunc (-1) (sum X Y)). Infix "\/" := lor. Section lor_props. Variable X Y Z : hProp. Context `{Univalence}. Theorem lor_assoc : (X \/ (Y \/ Z)) = ((X \/ Y) \/ Z). Proof. apply path_iff_hprop ; cbn. * simple refine (Trunc_ind _ _). intros [x | yz] ; cbn. + apply (tr (inl (tr (inl x)))). + simple refine (Trunc_ind _ _ yz). intros [y | z]. ++ apply (tr (inl (tr (inr y)))). ++ apply (tr (inr z)). * simple refine (Trunc_ind _ _). intros [xy | z] ; cbn. + simple refine (Trunc_ind _ _ xy). intros [x | y]. ++ apply (tr (inl x)). ++ apply (tr (inr (tr (inl y)))). + apply (tr (inr (tr (inr z)))). Defined. Theorem lor_comm : (X \/ Y) = (Y \/ X). Proof. apply path_iff_hprop ; cbn. * simple refine (Trunc_ind _ _). intros [x | y]. + apply (tr (inr x)). + apply (tr (inl y)). * simple refine (Trunc_ind _ _). intros [y | x]. + apply (tr (inr y)). + apply (tr (inl x)). Defined. Theorem lor_nl : (False_hp \/ X) = X. Proof. apply path_iff_hprop ; cbn. * simple refine (Trunc_ind _ _). intros [ | x]. + apply Empty_rec. + apply x. * apply (fun x => tr (inr x)). Defined. Theorem lor_nr : (X \/ False_hp) = X. Proof. apply path_iff_hprop ; cbn. * simple refine (Trunc_ind _ _). intros [x | ]. + apply x. + apply Empty_rec. * apply (fun x => tr (inl x)). Defined. Theorem lor_idem : (X \/ X) = X. Proof. apply path_iff_hprop ; cbn. - simple refine (Trunc_ind _ _). intros [x | x] ; apply x. - apply (fun x => tr (inl x)). Defined. End lor_props.