Require Import HoTT. Require Import FSets. Section interface. Context `{Univalence}. Variable (T : Type -> Type) (f : forall A, T A -> FSet A). Context `{hasMembership T, hasEmpty T, hasSingleton T, hasUnion T, hasComprehension T}. Class sets := { f_empty : forall A, f A empty = ∅ ; f_singleton : forall A a, f A (singleton a) = {|a|}; f_union : forall A X Y, f A (union X Y) = (f A X) ∪ (f A Y); f_filter : forall A ϕ X, f A (filter ϕ X) = comprehension ϕ (f A X); f_member : forall A a X, member a X = a ∈ (f A X) }. End interface. Section properties. Context `{Univalence}. Variable (T : Type -> Type) (f : forall A, T A -> FSet A). Context `{sets T f}. Definition set_eq : forall A, T A -> T A -> hProp := fun A X Y => (BuildhProp (f A X = f A Y)). Definition set_subset : forall A, T A -> T A -> hProp := fun A X Y => (f A X) ⊆ (f A Y). Ltac reduce := intros ; repeat (rewrite (f_empty _ _) || rewrite ?(f_singleton _ _) || rewrite ?(f_union _ _) || rewrite ?(f_filter _ _) || rewrite ?(f_member _ _)). Definition empty_isIn : forall (A : Type) (a : A), member a empty = False_hp. Proof. by reduce. Defined. Definition singleton_isIn : forall (A : Type) (a b : A), member a (singleton b) = merely (a = b). Proof. by reduce. Defined. Definition union_isIn : forall (A : Type) (a : A) (X Y : T A), member a (union X Y) = lor (member a X) (member a Y). Proof. by reduce. Defined. Definition filter_isIn : forall (A : Type) (a : A) (ϕ : A -> Bool) (X : T A), member a (filter ϕ X) = if ϕ a then member a X else False_hp. Proof. reduce. apply properties.comprehension_isIn. Defined. Definition reflect_eq : forall (A : Type) (X Y : T A), f A X = f A Y -> set_eq A X Y. Proof. done. Defined. Definition reflect_subset : forall (A : Type) (X Y : T A), subset (f A X) (f A Y) -> set_subset A X Y. Proof. done. Defined. Hint Unfold set_eq set_subset. Ltac simplify := intros ; autounfold in * ; apply reflect_eq ; reduce. Definition well_defined_union : forall (A : Type) (X1 X2 Y1 Y2 : T A), set_eq A X1 Y1 -> set_eq A X2 Y2 -> set_eq A (union X1 X2) (union Y1 Y2). Proof. intros A X1 X2 Y1 Y2 HXY1 HXY2. simplify. by rewrite HXY1, HXY2. Defined. Definition well_defined_filter : forall (A : Type) (ϕ : A -> Bool) (X Y : T A), set_eq A X Y -> set_eq A (filter ϕ X) (filter ϕ Y). Proof. intros A ϕ X Y HXY. simplify. by rewrite HXY. Defined. Lemma union_comm : forall A (X Y : T A), set_eq A (union X Y) (union Y X). Proof. simplify. apply comm. Defined. End properties.