(* This is a /bad/ definition of FSets, without the 0-truncation. Here we show that the resulting type is not an h-set. *) Require Import HoTT. Require Import HitTactics. Module Export FSet. Section FSet. Variable A : Type. Private Inductive FSet : Type := | E : FSet | L : A -> FSet | U : FSet -> FSet -> FSet. Notation "{| x |}" := (L x). Infix "∪" := U (at level 8, right associativity). Notation "∅" := E. Axiom assoc : forall (x y z : FSet ), x ∪ (y ∪ z) = (x ∪ y) ∪ z. Axiom comm : forall (x y : FSet), x ∪ y = y ∪ x. Axiom nl : forall (x : FSet), ∅ ∪ x = x. Axiom nr : forall (x : FSet), x ∪ ∅ = x. Axiom idem : forall (x : A), {| x |} ∪ {|x|} = {|x|}. End FSet. Arguments E {_}. Arguments U {_} _ _. Arguments L {_} _. Arguments assoc {_} _ _ _. Arguments comm {_} _ _. Arguments nl {_} _. Arguments nr {_} _. Arguments idem {_} _. Notation "{| x |}" := (L x). Infix "∪" := U (at level 8, right associativity). Notation "∅" := E. Section FSet_induction. Variable A: Type. Variable (P : FSet A -> Type). Variable (eP : P ∅). Variable (lP : forall a: A, P {|a |}). Variable (uP : forall (x y: FSet A), P x -> P y -> P (x ∪ y)). Variable (assocP : forall (x y z : FSet A) (px: P x) (py: P y) (pz: P z), assoc x y z # (uP x (y ∪ z) px (uP y z py pz)) = (uP (x ∪ y) z (uP x y px py) pz)). Variable (commP : forall (x y: FSet A) (px: P x) (py: P y), comm x y # uP x y px py = uP y x py px). Variable (nlP : forall (x : FSet A) (px: P x), nl x # uP ∅ x eP px = px). Variable (nrP : forall (x : FSet A) (px: P x), nr x # uP x ∅ px eP = px). Variable (idemP : forall (x : A), idem x # uP {|x|} {|x|} (lP x) (lP x) = lP x). (* Induction principle *) Fixpoint FSet_ind (x : FSet A) {struct x} : P x := (match x return _ -> _ -> _ -> _ -> _ -> P x with | ∅ => fun _ _ _ _ _ => eP | {|a|} => fun _ _ _ _ _ => lP a | y ∪ z => fun _ _ _ _ _ => uP y z (FSet_ind y) (FSet_ind z) end) assocP commP nlP nrP idemP. Axiom FSet_ind_beta_assoc : forall (x y z : FSet A), apD FSet_ind (assoc x y z) = (assocP x y z (FSet_ind x) (FSet_ind y) (FSet_ind z)). Axiom FSet_ind_beta_comm : forall (x y : FSet A), apD FSet_ind (comm x y) = commP x y (FSet_ind x) (FSet_ind y). Axiom FSet_ind_beta_nl : forall (x : FSet A), apD FSet_ind (nl x) = nlP x (FSet_ind x). Axiom FSet_ind_beta_nr : forall (x : FSet A), apD FSet_ind (nr x) = nrP x (FSet_ind x). Axiom FSet_ind_beta_idem : forall (x : A), apD FSet_ind (idem x) = idemP x. End FSet_induction. Section FSet_recursion. Variable A : Type. Variable P : Type. Variable e : P. Variable l : A -> P. Variable u : P -> P -> P. Variable assocP : forall (x y z : P), u x (u y z) = u (u x y) z. Variable commP : forall (x y : P), u x y = u y x. Variable nlP : forall (x : P), u e x = x. Variable nrP : forall (x : P), u x e = x. Variable idemP : forall (x : A), u (l x) (l x) = l x. Definition FSet_rec : FSet A -> P. Proof. simple refine (FSet_ind A _ _ _ _ _ _ _ _ _) ; try (intros ; simple refine ((transport_const _ _) @ _)) ; cbn. - apply e. - apply l. - intros x y ; apply u. - apply assocP. - apply commP. - apply nlP. - apply nrP. - apply idemP. Defined. Definition FSet_rec_beta_assoc : forall (x y z : FSet A), ap FSet_rec (assoc x y z) = assocP (FSet_rec x) (FSet_rec y) (FSet_rec z). Proof. intros. unfold FSet_rec. eapply (cancelL (transport_const (assoc x y z) _)). simple refine ((apD_const _ _)^ @ _). apply FSet_ind_beta_assoc. Defined. Definition FSet_rec_beta_comm : forall (x y : FSet A), ap FSet_rec (comm x y) = commP (FSet_rec x) (FSet_rec y). Proof. intros. unfold FSet_rec. eapply (cancelL (transport_const (comm x y) _)). simple refine ((apD_const _ _)^ @ _). apply FSet_ind_beta_comm. Defined. Definition FSet_rec_beta_nl : forall (x : FSet A), ap FSet_rec (nl x) = nlP (FSet_rec x). Proof. intros. unfold FSet_rec. eapply (cancelL (transport_const (nl x) _)). simple refine ((apD_const _ _)^ @ _). apply FSet_ind_beta_nl. Defined. Definition FSet_rec_beta_nr : forall (x : FSet A), ap FSet_rec (nr x) = nrP (FSet_rec x). Proof. intros. unfold FSet_rec. eapply (cancelL (transport_const (nr x) _)). simple refine ((apD_const _ _)^ @ _). apply FSet_ind_beta_nr. Defined. Definition FSet_rec_beta_idem : forall (a : A), ap FSet_rec (idem a) = idemP a. Proof. intros. unfold FSet_rec. eapply (cancelL (transport_const (idem a) _)). simple refine ((apD_const _ _)^ @ _). apply FSet_ind_beta_idem. Defined. End FSet_recursion. Instance FSet_recursion A : HitRecursion (FSet A) := { indTy := _; recTy := _; H_inductor := FSet_ind A; H_recursor := FSet_rec A }. End FSet. Notation "{| x |}" := (L x). Infix "∪" := U (at level 8, right associativity). Notation "∅" := E. Section set_sphere. From HoTT.HIT Require Import Circle. Context `{Univalence}. Instance S1_recursion : HitRecursion S1 := { indTy := _; recTy := _; H_inductor := S1_ind; H_recursor := S1_rec }. Variable A : Type. Definition f (x : S1) : x = x. Proof. hrecursion x. - exact loop. - refine (transport_paths_FlFr _ _ @ _). hott_simpl. Defined. Definition S1op (x y : S1) : S1. Proof. hrecursion y. - exact x. (* x + base = x *) - apply f. Defined. Lemma S1op_nr (x : S1) : S1op x base = x. Proof. reflexivity. Defined. Lemma S1op_nl (x : S1) : S1op base x = x. Proof. hrecursion x. - exact loop. - refine (transport_paths_FlFr loop _ @ _). hott_simpl. apply moveR_pM. apply moveR_pM. hott_simpl. refine (ap_V _ _ @ _). f_ap. apply S1_rec_beta_loop. Defined. Lemma S1op_assoc (x y z : S1) : S1op x (S1op y z) = S1op (S1op x y) z. Proof. hrecursion z. - reflexivity. - refine (transport_paths_FlFr loop _ @ _). hott_simpl. apply moveR_Mp. hott_simpl. rewrite S1_rec_beta_loop. rewrite ap_compose. rewrite S1_rec_beta_loop. hrecursion y. + symmetry. apply S1_rec_beta_loop. + apply is1type_S1. Qed. Lemma S1op_comm (x y : S1) : S1op x y = S1op y x. Proof. hrecursion x. - apply S1op_nl. - hrecursion y. + rewrite transport_paths_FlFr. hott_simpl. rewrite S1_rec_beta_loop. reflexivity. + apply is1type_S1. Defined. Definition FSet_to_S : FSet A -> S1. Proof. hrecursion. - exact base. - intro a. exact base. - exact S1op. - apply S1op_assoc. - apply S1op_comm. - apply S1op_nl. - apply S1op_nr. - simpl. reflexivity. Defined. Lemma FSet_S_ap : (nl (@E A)) = (nr E) -> idpath = loop. Proof. intros H1. enough (ap FSet_to_S (nl E) = ap FSet_to_S (nr E)) as H'. - rewrite FSet_rec_beta_nl in H'. rewrite FSet_rec_beta_nr in H'. simpl in H'. unfold S1op_nr in H'. exact H'^. - f_ap. Defined. Lemma FSet_not_hset : IsHSet (FSet A) -> False. Proof. intros H1. enough (idpath = loop). - assert (S1_encode _ idpath = S1_encode _ (loopexp loop (pos Int.one))) as H' by f_ap. rewrite S1_encode_loopexp in H'. simpl in H'. symmetry in H'. apply (pos_neq_zero H'). - apply FSet_S_ap. apply set_path2. Qed. End set_sphere.