
RADBOUD UNIVERSITY

MASTER THESIS COMPUTER SCIENCE

Higher Inductive Types

Niels van der Weide

supervised by
Herman GEUVERS and Henning BASOLD

July 3, 2016

Abstract
In type theories like Martin-Löf type theory one often assumes that there is only one

proof for an equality, namely reflexivity. In homotopy type theory this assumption is
dropped and non-trivial identity proofs are allowed. This becomes especially powerful
if one can add identities to the theory, as then, for example, quotient types can be
represented. A controlled way to add identity proofs are higher inductive types. These
are like inductive types in classical type theories, only that we are not just allowed to
specify constructors for elements of a type but also for identity proofs on that type.

Currently, many examples of higher inductive types are known but a general defini-
tion is missing. In this paper, we rectify this situation and introduce a general syntax for
higher inductive types, which also allows constructors for higher paths. Moreover, we
give the corresponding elimination and computation rules, and show that computations
preserve types. Finally, we show how to interpret a subclass of these higher inductive
types over categories, an instance of which is the category of topological spaces.

Acknowledgements

Some people have helped me making this thesis. First of all, I would like to thank
Herman Geuvers for being my supervisor. Herman helped me with forming the text
and the structure of the thesis. Also, he discussed the material with me and helped me
writing it down clearly. Secondly, I would like to thank Henning Basold. He discussed
most of the material with me and provided several good ideas.

i

Contents

Acknowledgements i

Contents iv

Chapter 1. Introduction 1

Chapter 2. Type Theory 3
2.1. Basic Type Theory 3
2.2. Examples of Types 4
2.3. Homotopy Type Theory 10
2.4. Elementary Examples of Higher Inductive Types 12

Chapter 3. Categorical Interpretation 15
3.1. Basic Definitions and Examples 15
3.2. Constructions 16
3.3. Interpreting Type Theory 20

Chapter 4. Higher Inductive Types 25
4.1. CW-Complexes 25
4.2. Intervals 26
4.3. Basic Introduction of Higher Inductive Types 28
4.4. Higher Inductive Types from Points 30
4.5. Nonrecursive Higher Inductive Types 34
4.6. Recursive Higher Inductive Types 39

Chapter 5. Applications 43
5.1. Modular Arithmetic 43
5.2. Truncations 44
5.3. Data Types in Functional Programming 45

Chapter 6. Conclusion and Related Work 55
6.1. Conclusion 55
6.2. Required Improvements 55
6.3. Related Work 56

Bibliography 59

Appendix A. List of Rules in Type Theory 61

iii

CHAPTER 1

Introduction

Type theory is a form of logic that is naturally connected with intuitionistic first
order predicate logic. Rather than propositions and proofs one talks about types and
terms in type theory. There is even a deep connection: propositions and proofs corre-
spond with types and terms respectively. This way one can use type theory to reason
about mathematical statements.

In logic we describe a connective by giving introduction rules, which tell us how
to prove the statement, and elimination rules, which tell us what we can prove with
the statement. Similarly, types come with introduction rules, which tell us how to
build terms of that type, and elimination rules, which tells us how to map elements
of that type to some other type. However, a difference is that types also come with
computation rules which say how terms can be simplified. The elimination rule also
has another way of using it, namely it can be used as an induction principle. This allows
us to prove properties of the type. All in all, just like in logic one can talk about the
construction of new types from other types.

In addition type theory is naturally connected with computer science, and in par-
ticular with functional programming. There one makes programs of a certain type, and
here types correspond with types and terms with programs. This is why in type theory
computational interpretations are important, but type theory should also be able to de-
scribe everything used in functional programming. So, there should be function types
and algebraic data types, but also the axioms should make sense in a computational
setting.

However, for algebraic data types the usual connectives from logic are not suffi-
cient, because they only give finite types. A possible way to talk about algebraic types
is given by inductive types. To describe such a type, one gives constructors with their
arities, and then the terms are built from the constructors. Maps out of an inductive
type can be defined via recursion, and we clarify this using examples. One can repre-
sent the natural numbers as an inductive type N which has a constructor 0 with arity 0
and a constructor S with arity 1. The terms of this type are 0, S(0), S(S(0)), and so on,
and thus the terms correspond with natural numbers. To make a map from the type N
to some other type Y , we need some point z of Y , to which 0 is mapped, and a map
s : Y → Y . If we know that n is mapped to y , then S(n) is mapped to s(y), and this
way we can determine the complete map.

Another example would be the booleans, which has two constructors True and
False, both of arity 0. This type only has two terms, namely True and False. One can
make a map from the booleans to another type Y by giving two terms yTrue and yFalse of
Y , which will be the images of True and False respectively. Both the natural numbers
and the booleans have an elimination rule and with this rule, we can give an induction
principle for these types. This way we can prove some property for all natural numbers
or all booleans.

1

2 1. INTRODUCTION

Recently, homotopy type theory has emerged as a new direction of type theory. In
type theory we can talk about the equality of terms. For example, one can define the
type A→ B, which is the type of functions from A to B. Suppose that we have some term
f that maps every x to x . Then we can reduce the term f (x) to x , and thus the terms
x and f (x) are definitionally equal. In general, terms can be reduced to other terms,
and reduction gives the notion of definitional equality. However, it is also possible
to define another notion of equality called propositional equality, and homotopy type
theory is about that notion. Given two terms x and y of the same type, we can define
a type whose terms are equality proofs of x and y . More concretely, it is defined as an
inductive type, which has a constructor for reflexivity proofs. Homotopy type theory
is different, because types are seen as topological spaces identified up to homotopy
equivalence and equalities are seen as paths. In topology there can be multiple paths
between x and x , so there can be multiple proofs which show that x is equal to itself.
Hence, even though we may assume in type theory that identity proofs are unique, this
is not sensible in homotopy type theory.

However, in topology one often speaks about spaces like the intervals. These do not
have natural analogues in type theory, and to solve that one needs a way to construct
spaces in homotopy type theory. For example, the interval should have two points 0
and 1, and an equality proof of 0 and 1. On the other hand, the circle has one point
base and an equality proof loop between base and base. Note that the circle type would
just be a point if identity proofs would be unique. For homotopy type theory we need
a general framework to define such types called higher inductive types.

In addition such a framework allows us to talk about quotient types. To construct
the integers modulo 2 one can take a quotient of the typeN by saying that 0 is equal to 2.
This can easily be generalized to give a data type for the integers modulo, because one
just takes the quotient ofN. Similarly, a data type of symmetric trees can be defined, and
thus higher inductive types give a wide range of new possible types in programming.

More generally, higher inductive types allow both point and path constructors. So,
for inductive types we give constructors with their arities which give the points, but
for higher inductive types also give constructors which are equalities between these
points. Our goal is to give a formal definition and interpretation of higher inductive
types. More concretely, we give a syntax of higher inductive types with introduction
rules, elimination rules and computation rules, and we show how to interpret this in
category theory.

This thesis is structured as follows. In Chapter 2 we start by giving a basic in-
troduction to Type Theory, and then we discuss examples of types like product types,
sum types, dependent types and such. Next we discuss the basics of homotopy type
theory. We give some properties of paths, and we discuss the Univalence Axiom. In
the last section we look at some known and elementary examples of higher inductive
types. These are the sphere, and the interval. In Chapter 4 we give our original work
on higher inductive types. We start with CW-complexes on which our interpretation of
higher inductive types are based. Then we give several definitions of higher inductive
types. These are increasing in complexity, and step by step the definition becomes more
general and allows more examples.

CHAPTER 2

Type Theory

Martin-Löf type theory is a form of logic, in which types and terms form the elemen-
tary notions. In first orderlogic, propositions and proofs are seen as the basic notions
instead. Formulas are built from connectives, so ∧, ∨, ¬, →, ∀, ∃, ⊥, >. For all these
connectives there are certain introduction and elimination rules which tell us how we
can use them. In type theory we can only talk about types and terms, so we need to
define them in a different way. We need formation rules for these types, and we need
rules which tell us how to make functions between types.

One important feature of type theory is that we formulate logic in type theory.
For this we need types that model the connectives. For example, with product types
we model conjunctions and with sum types we model disjunctions. The introduction
and elimination rules of the sums correspond with those of conjunction. This way we
can make a correspondence between type theory and intuitionistic logic, and this is
called the Brouwer-Heyting-Kolmogorov interpretation. With these predicates we can
do intuitionistic logic, and this is why type theory is a constructive theory.

The last important feature of type theory is that we have inductive types. In the
metalanguage we can define some concrete types like the natural numbers or product
types, but one would also like to have general ways to define types. This can be com-
pared to programming languages where users can define their own types instead of
just using the basic types. These inductive types have a computational interpretation,
which is also desired in type theory.

In this section we give a description of Martin-Löf type theory and a beginning of
homotopy type theory. It is based on [Uni13].

2.1. Basic Type Theory

As said before, types are one of the elementary notions of type theory, and we start
with basic type formation rules and contexts. We start with a formal introduction of
the rules, and explain them afterwards. In our formal language we have types, denoted
by A, B, . . ., and variables x , y, z, Next we define contexts inductively. The empty
context · is a context, and if we have a context Γ , a type symbol A and a variable symbol
x , then Γ , x : A is another context. There are a number of statements in type theory,
namely Γ ` A : TYPE, Γ ` a : A and Γ ` a = b. However, when we work with type theory,
we need to restrict the contexts we use. This is because we do not want a variable to
occur twice in the context, so we do not want to allow x : A, x : B ` f [x] : C where we
use the notation f [x] for a term with free variable x .

To do this, we define a function Var which takes the variables of a context Γ . We
say that Var(·) = ;, and that Var(Γ , x : A) is {x}∪Var(Γ). A nice context is one in which
no variable occurs twice. So, the empty context is nice, and if Γ is nice and x /∈ Var(Γ),
then Γ , x : A is nice. The next notion we define is well-formed, and we notate this by
Γ ctx. We have an axiom · ctx, and for every nice context Γ , x : A a reasoning rule

3

4 2. TYPE THEORY

Γ ctx Γ ` A : TYPE x /∈ Var(Γ)
Γ , x : A ctx

From now on all contexts are assumed to be well-formed.
The statement Γ ` A : TYPE is read as ‘A is a type in context Γ ’, and Γ ` a : A

is interpreted as ‘Γ proves that a is a term of type A’. In the construction of types
and terms only the variables in the corresponding context may be used. The reason we
only use well-formed contexts, is because the involved types must indeed be types. This
motivates the reasoning rules since this gives that every type symbol in the context must
indeed be a type. Also, we exclude contexts like x : A, x : B for convenience, because
then the type of x is ambiguous.

Now we explain how to define new types in the metalanguage. We add rules, and
we require that the universe of types is closed under these rules. There are several kind
of rules which we need to give. First of all, we have formation rules which say when
the type exist. The second kind of rules are introduction rules which are used to make
terms of the type. Elimination rules say how we can use elements of the type, and the
computation rules say the result of the elimination rules on the terms of the type.

2.2. Examples of Types

Let us discuss some examples of types, and we will introduce them via the system
discussed in the end of the previous section.

2.2.1. Function Types. Function types are very important in type theory, and that
is why we discuss them first. The formation rule is

Γ ` A : TYPE Γ ` B : TYPE

Γ ` A→ B : TYPE

Hence, if Γ is a well-defined context and both A and B are types, then we have a product
type A→ B. The introduction rule is called λ-abstraction, and is formulated as

Γ , x : A` f [x] : B
Γ ` λx . f [x] : A→ B

Here we assume that Γ , x : A is a well-formed context, and f [x] is a term with x as
free variable. So, we can make elements of the function type with λ-abstraction. Our
elimination rule is function-application.

Γ ` a : A Γ ` f : A→ B
Γ ` f a : B

The computation rule says that (λx . f [x]) a = f [a/x], where f [a/x] is the term f [x]
with a substituted for x . This is called β-reduction in λ-calculus. With this type we can
construct functions between types, and note that this is similar to implication in logic.

Note that we always have the identity function, namely IdA = λx .x . By the com-
putation rule we have IdA a = a, so it is indeed the identity function. Also, we can
compose functions, so suppose that Γ ` f : A→ B and that g : B→ C . Then we define
g ◦ f = λx .g (f x).

2.2.2. Product Types. Next we discuss product types, and the formation rule is

Γ ` A : TYPE Γ ` B : TYPE

Γ ` A× B : TYPE

The introduction rule is

2.2. EXAMPLES OF TYPES 5

Γ ` a : A Γ ` b : B
Γ ` (a, b) : A× B

We have two elimination rules.

Γ ` x : A× B
Γ ` p1 x : A

This is the first projection, and we have a second projection

Γ ` x : A× B
Γ ` p2 x : B

The computation rule says that p1 (a, b) = a and that p2 (a, b) = b. Note the similarities
between the induction and elimination rules of the conjunction and the product type.

Products types are functorial meaning that if we have f : A→ C and g : B → D,
then we get a map f × g : A× B→ C × D. Define

f × g = λx .(f (p1 x), g (p2 x)).

2.2.3. Sum Types. Another possible type is the sum type, and the formation rule
is the same.

Γ ` A : TYPE Γ ` B : TYPE

Γ ` A+ B : TYPE

However, now we have two introduction rules

Γ ` a : A
Γ ` ι1 a : A+ B

This is the first inclusion, and we also have a second inclusion

Γ ` b : B
Γ ` ι2 b : A+ B

The elimination rule says how to map A+B to some type C assuming that Γ ` C : TYPE.

Γ ` p : A+ B Γ , x : A` f [x] : C Γ , y : B ` g[y] : C
Γ ` (case p of x : A then f [x], of y : B then g[y]) : C

The context Γ , C : TYPE, x : A must be well-formed, so we must have Γ ` C : TYPE. The
computation rule says that

case ι1 a of x : A then f [x], of y : B then g[x] = f [a/x]

and that

case ι2 b of x : A then f [x], of y : B then g[x] = g[b/y].

Note that the function is defined by matching: inhabitants of type A are mapped via f
and inhabitants of B are mapped via g. Sum types are similar to disjunctions in logic.

Sum types are functorial as well. Suppose that we have f : A→ C and g : B→ D,
and now our goal is to make f + g : A+ B→ C + D. Define

f + g = λp.case p of x : A then f x , of y : B then g y

6 2. TYPE THEORY

2.2.4. The Empty Type and the Unit Type. There are types which can be defined
in the empty context. One example of this is the type ⊥. The formation rule is easy,
namely · ` ⊥ : TYPE. There are no introduction rules or computation rules, but we
have the elimination rule x : ⊥ : TYPE `!C(x) : C if we can proof C : TYPE. Another
example is the type >, and again we have a formation rule · ` > : TYPE. We have an
introduction rule · ` ∗ :>, and we have an elimination rule

Γ , C : TYPE ` c : C
Γ , x :> ` > -rec(c, x) : C

with the computation > -rec(c,∗) = c. In the interpretation of intuitionistic logic we
interpret > and ⊥ as > and ⊥ respectively

2.2.5. Dependent Products. The next step will be defining the dependent prod-
uct and sum. The function type only allows maps which map every inhabitant to the
same type. However, we would like to generalize this. Inhabitants can be mapped
to different types, and this still gives a function. Such functions are called dependent
functions, and if we work in a type theory with those, we must also give dependent
elimination rules. The type of dependent functions is called the dependent products,
and the formation rule is as follows

Γ ` A : TYPE Γ , x : A` B[x] : TYPE

Γ `
∏

x : A.B[x] : TYPE

The introduction rule is called λ-abstraction, and is similar to λ-abstraction of nonde-
pendent functions.

Γ , x : A` f [x] : B[x]
Γ ` λx . f [x] :
∏

x : A.B[x]

Our elimination rule is function-application.

Γ ` a : A Γ ` f :
∏

x : A.B[x]
Γ ` f a : B[a/x]

and the computation rule says that (λx . f [x]) a = f [a/x]. With this type we can con-
struct functions between types, and note that this is similar to the universal quantifica-
tion in logic.

2.2.6. Dependent Sums. For dependent sums we have the same formation rule

Γ ` A : TYPE Γ , x : A` B[x] : TYPE

Γ `
∑

x : A.B[x] : TYPE

The introduction rule is written as

Γ , a : A` b : B[a/x]
Γ ` (a, b) :
∑

x : A.B[x]

Our elimination rule is similar to the one for sum types, and is given as follows.

Γ ` p :
∑

x : A.B[x] Γ ` C : TYPE Γ , x : A, y : B[x] ` f [x , y] : C
Γ ` case p of (x , y) then f [x , y] : C

2.2. EXAMPLES OF TYPES 7

where the computation rules says that

case (a, b) of B[x] then f [x , y] = f [a/x , b/y]

whenever y : B[x].
Dependent types generalize some types discussed before. For example, function

types are a special case of dependent types if every B[x] is equal. Also, product types
are dependent types if every B[x] is the same type. Looking at the rules, one can see
the similarity between dependent products and universal quantifiers, and dependent
sums and existential quantifiers. This connects dependent type theory with predicate
logic.

With these rules we can make projection functions. We define

π1 = λp.case p of B[x] then x

which gives x = π1 (x , y). However, we are unable to define the second projection
which should have the following definition

π2 = λp.case p of B[x] then y

To solve this we need the dependent elimination rule.
If we work in a type theory with dependent types, then we also want a dependent

elimination rule. These are based on the original elimination rule, and we make it
dependent by making the type depend on the variable. For example, the dependent
elimination rule for the dependent sum is given that we can prove Γ , z :

∑

x : A.B[x] `
Y [z] : TYPE,

Γ ` p :
∑

x : A.B[x] Γ , a : A, b : B[x] ` f [a, b] : Y [(a, b)/z]
Γ ` case p of (x , y) then f : Y [p/z]

With this rule we can the define the second projection of the dependent sum. For the
other rules we can give dependent elimination rules as well.

2.2.7. W -types. The next types we discuss are the so-called W-types, and these
are very general, because it is a way to describe inductive types. So far we only dis-
cussed concrete types, but W-types generalize many types. Before diving into technical
formalisms, let us try to understand what a W-type means. In functional programming
language we define a type by giving constructors which all have an arity. For example,
the type N has two constructors, namely 0 with arity 0 and S with arity 1. Now we
informally take the free algebra with these constructors, and then we get all terms of
the form S(. . . (S(0))). Also, one can make a type of unlabeled binary trees. Here we
again have two constructors, namely the leaf constructor with arity 0 and a constructor
node with arity 2. Again the actual type is made by taking the free algebra, and then
we build trees with these constructors. This motivates how we construct inhabitants of
a general W -type: we make trees.

We let A be the type which has all the constructors and the type
∏

a : A.B[a] has
the arities of every constructor a. For the natural numbers we can let A be the type
>+>, and for the arities we need to give two types B[0] and B[1]. Define B[0] = ⊥
and B[1] = >. The inhabitants of this W -type, which we call Wx:AB[x], are trees
built from the constructors. So, if we have a constructor a and a function b of type
B[a]→Wx:AB[x], then we should get some sup(a, b) of type Wx:AB[x]. We thus have
a node a and its children are given by the function b. Such trees are well-founded trees,
and that is why it is known as W -types.

8 2. TYPE THEORY

How can we make a function from a W -type to some dependent type Y [x]? Sup-
pose we have some node a with children b. If we know how to map the children
to Y [x], and we know how to ‘combine’ these into one inhabitant of Y [x], then we
are done. We can use induction to construct the map. So, for inhabitants a : A and
b : B[a] → Wx:AB[x], we need to give an inhabitant of Y [sup(a, b)/x] if we have a
map g :
∏

y : B[x].Y [b(y)/x]. If y : B[a/x], then b y is a child of sup(a, b), and
all the children are formed this way, which is why we need the map to be of type
∏

y : B[x].Y [b y/x].
Now we describe W -types formally, and in this description we abbreviate Wx:AB(x)

to W . We start with the formation rule
Γ ` A : TYPE Γ , x : A` B[x] : TYPE

Γ `Wx:AB[x] : TYPE

Hence, W -types must always exist. The formation rule has already been described and
looks as follows

Γ ` a : A Γ ` f : B[a]→W
Γ ` sup(a, b) : W

Also, the elimination rule was discussed as well given that Γ , w : W ` Y [w] : TYPE

Γ , a : A, f : B[a]→W, g :
∏

b : B[x].Y [f (b)/a] ` c[a, f , g] : Y [sup(a, b)/x]
Γ , w : W ` wrec(w, c) : Y [w/x]

For the computation rule we need to tell what wrec(sup(a, f), c) is, and we say
that this is equal to c(a, f ,λy.wrec(u y, c)) This means that the function is defined by
recursion. It is given that a : A and f : B[a] → W . Hence, using that wrec(f y, c) :
Y [f y/x], we see that this equality makes sense, because both wrec(sup(a, f), c) and
c(a, f ,λy.w(u y, c) inhabit the type Y [sup(a, f)/x].

For W -type we need an axiom called function extensionality which says that for
f , g :
∏

x : A.B(x) we have f = g iff f x = g x for all x : A. This does not follow
from the rules so far. Function extensionality is a nice way to determine whether two
functions are equal, but without it, proving equality of functions is difficult. To deter-
mine whether inhabitants of W -types are equal, it is needed to determine whether two
functions are equal, so function extensionality is needed.

2.2.8. Inductive Schemes. Because W -types require extensionality, it is not con-
venient to use in practice. Therefore, we need an alternative way to describe inductive
type, and this is given by inductive schemes. Since we need to give constructors for an
inductive type, we start by saying how to specify those.

Definition 2.2.1 (Polynomial Functor). A polynomial functor is a map on types, and
we define it by induction. If B is any type, then the map H(X) = B is polynomial. The
identity functor H(X) = X is also polynomial. Lastly, if F and G are polynomial functors,
then F ×G and F +G where (F ×G)(X) = F(X)×G(X) and (F +G)(X) = F(X)+G(X)
are polynomial functors as well. ù

More formally, a polynomial functor can be seen as a map which maps type symbols
to type symbols. To give the elimination rule, we will need a lifting property. This says
that for any family of types x : A ` Y [x], we get a family H(Y)[x] on H(A). We define
it using induction, and the definition is as follows.

Definition 2.2.2 (Lifting). Let x : A ` Y [x] be a family of types and let H be a poly-
nomial functor. We define the lifting H of H using induction where H(Y) is a family of
types on H(A). For x : H(A) we define

2.2. EXAMPLES OF TYPES 9

• If H(X) = B, then H(Y)[x] = B.
• If H(X) = X , then H(Y)[x] = Y [x].
• If H(X) = F(X)× G(X), then H(Y)[x] = F(Y)[p1 x]× G(Y)[p2 x].
• If H(X) = F(X) + G(X), then

H(Y)[x] = case x of y : F(X) then F(Y)[y], of z : G(X) then G(Y)[z]. ù

Now we can give the syntax of an inductive scheme.

Definition 2.2.3 (Inductive Scheme). We define an inductive scheme according to the
following syntax

Inductive T (B1 : TYPE) . . . (B` : TYPE) :=
| c1 : H1(T)→ T
. . .
| ck : Hk(T)→ T

We require that every Hi is polynomial in T and uses parameters B1, . . . , B`. Also, we
denote T (B1, . . . , B`) by T . The introduction rules for the points are

Γ ` Bi : TYPE for i = 1, . . . ,` Γ ` x : Hi(T)
Γ ` ci x : T

and the elimination rule is

Γ , x : T ` Y [x] : TYPE Γ ` zi :
∏

x : Hi(T).Hi(Y)(x)→ Y (ci x) for i = 1, . . . , k

Γ ` T -elim(z1, . . . , zk) :
∏

x : T.Y [x]

The computation rules are for t : Hi(T)

T -elim(z1, . . . , zk) (ci t) = (zi t) (Hi(T -elim(z1, . . . , zk)). ù

There are many examples of inductive types, and among them is the natural num-
bers which is defined as follows

Inductive N :=
| 0 : N
| S : N→ N

Similarly, one can define an inductive type for lists, booleans, and many more types.

2.2.9. Identity Type. In type theory there is an ‘internal’ notion of equality called
propositonal equality, and this is defined using Identity Types x y . These can be
formed by the following rule.

Γ ` x : A Γ ` y : A
Γ ` x y : TYPE

One identity we expect to hold is x equals x , so we have the introduction rule.

Γ ` x : A
Γ ` reflx : x x

Lastly, the elimination rule, also known as the J -rule, says that a map from x y to Y
is determined by what it does on the reflexivity path. So, this is formulated as

Γ , p : x y ` Y [x , y, p] : TYPE Γ , a : A` t(a) : Y [a/x , a/x , reflx /p]
Γ , q : a b ` J(t, x , y, p) : Y [a/x , b/y, q/p]

10 2. TYPE THEORY

with J(t, x , x , reflx) = t. Applying the J -rule is also known as path induction.
Up to now we have given many computation rules, and the smallest equivalence

relation containing these is called definitional equality. If two terms are definitionally
equal, then they are propositionally equal. However, propositional equality might not
imply definitional equality. If this is the case, then the type theory is extensional. Oth-
erwise, the type theory is called intensional. An example of intensional type theory is
homotopy type theory.

2.3. Homotopy Type Theory

So far we have seen many types, and all of these have computation rules. Reducing
these terms give a form of equality called definitional equality. In type theory it is also
possible to define an internal notion of equality, called propositional equality, and that
is given by the identity types.

In homotopy type theory we interpret inhabitants of x y as paths from x to y .
We have actual equalities between functions given by the computation rules However,
there is no reason to assume that x = y whenever we have an inhabitant of x y .
Therefore, we can interpret p : x y as something other than an equality between x
and y . One possibility would be paths, but then we should also have some structure.
In algebraic topology we have the functor Π sending X to the category whose objects
are elements of x and whose arrows are paths. This is called the fundamental groupoid,
and that is because Π(X) is always a groupoid. Paths can be inverted, we have identity
paths, paths can be composed. Also, it is a functor, so if we have f : X → Y then we
get Π(f) : Π(X) → Π(Y). We would like that x y has the same structure as the
fundamental groupoid.

To show all these properties, we use path induction. We start by showing that paths
can be inverted.

Proposition 2.3.1. For all contexts Γ , types A and terms x , y : A we have a function
x y → y x. More formally, in type theory we can prove

Γ , p : x y ` p−1 : y x

PROOF. We apply the J -rule with Y [x , y, p] = y x and t[x] = reflx . Define
p−1 = J(t, x , y, p), and note that p−1 : Y [x , y, p] so p−1 : y x . �

The computation rule says that refl−1
x = reflx . Proposition 2.3.1 says that equality

is symmetrical. The next property says that equality is transitive, and this can also be
seen as the composition of paths.

Proposition 2.3.2. Let Γ be a context, A be a type and let x , y, z : A be terms. Then we
have a function (x y)× (y z)→ x z. More formally, in type theory we can prove

Γ , p : x y, q : y z ` p ◦ q : x z

PROOF. Let p : x y , and now we apply the J -rule. Take Y [y, z, q] = x z and
let t[x ′] be p. Define p ◦ q = J(t, y, z, q) which is of type Y [y, z, p] = x z. �

Note that the computation rule gives p ◦ refly = p. Normally transitivity is seen
as a property of a relation, but now we see it as an operation on paths. We can prove
some properties of that operation

Proposition 2.3.3. For p : x y, q : y z, r : z z′ we have inhabitants for the
following types

2.3. HOMOTOPY TYPE THEORY 11

(1) p p ◦ refly and p reflx ◦p;
(2) reflx p ◦ p−1 and refly p−1 ◦ p;
(3) p (p−1)−1;
(4) p ◦ (q ◦ r) (p ◦ q) ◦ r.

The first statement is written formally in type theory as

Γ , p : x y ` NeutralRight(p) : p p ◦ refly

and this can be proven using path induction. Another important property of paths is
that functions preserve paths.

Proposition 2.3.4. We have a term ap(f , p) of the following type

Γ , f : A→ B, x : A, y : A, p : x y ` ap(f , p) : f x f y

PROOF. Again we use path induction but now with Y [x , y, p] = f x f y . Define
t[x] = refl f x , and then we take ap(f , p) = J(t, x , y, p). �

The last property we need, is called transport which is needed when we talk about
dependent types. Later we talk about higher inductive types which are inductive types
with extra paths. So, we add constructors and also inhabitants of identity types be-
tween the constructor. For example, one could add two constructors 0 and 1 and an
inhabitant of 0 1. To make a dependent function from this type to some other type,
one would also want to say where the inhabitant of 0 1 is mapped to. So, we first
need to make types Y [0] and Y [1], but now we have a problem: 0 and 1 get mapped
to different types, so we cannot make a path between their images. To solve this, one
needs transport.

Proposition 2.3.5. Suppose, that Γ , x : A` Y [x] and that we have p : a b for a, b : A.
Then we have a function p∗ : Y [a/x]→ Y [b/x].

Again this is proved by path induction, and we leave details to the reader.

Lemma 2.3.6. For all a : A and p : a y we have the definitional equality p∗(refla) = p.

PROOF. Let a : A, and take Y [x] = a x . Now for p : x y we get a mapp∗ :
a x → a y . In particular, for x = a, we get p∗ : a a → a y , and then we
have the definitional equality p∗(refla) = p.. �

Definition 2.3.7 (Dependent Identity Type). Let x : A ` Y [x] be a family of type, and
let p : a b be a path with a, b : A. Then for y : Y [a/x] and z : Y [b/x] we define
y Y

p z = p∗(y) z. ù

With this we can prove the following proposition

Proposition 2.3.8. We have a term apd(f , p) of the type

Γ , f :
∏

x : A.Y [x], a : A, b : A, p : a b ` apd(f , p) : f a Y
p f b

Note that the type

Γ , f :
∏

x : A.Y [x], a : A, b : A, p : a b ` apd(f , p) : f a f b

is not well-formed. This is because f a is of type Y [a/x] and f b is of type Y [b/y].
Up to now everything we discussed in this section is just a part of normal type

theory, and we have not defined a distinguished aspect of homotopy type theory yet.
There are two such aspects, the first being the univalence axiom and the second being

12 2. TYPE THEORY

higher inductive types. We discuss the first now, and in the following section we shall
discuss examples of higher inductive types. In Chapter 4 we formally describe higher
inductive types. For types X and Y we can define the type X ' Y as
∑

f : X → Y
∑

g : Y → X (
∏

x : X .g (f x) x) + (
∏

y : Y . f (g x) y)

Intuitively, this means that there are functions f : X → Y and g : Y → X such that for
all x : X we have a path g (f x) x and for all y : Y we have a path f (g x) y . This
means that there is a homotopy equivalence between X and Y . On the other hand, one
can talk about X Y which means that ‘there is a path between the types’. The second
notion is stronger meaning that we can always make a function u : X Y → X ' Y .
This is done via path induction where we note that we can always find an inhabitant
of X ' X .

However, in general there might not be a function from X ' Y to X Y . The
univalence axiom says that this is possible. Let us define a type Eq(f) for f : A→ B as
follows

eq(f) =
∑

g : B→ A(
∏

x : X .g (f x) x) + (
∏

y : Y . f (g x) y)

which means that f is an equivalence.

Definition 2.3.9 (Univalence Axiom). We say that the univalence axiom holds iff for
all types X and Y there is an inhabitant h of the type eq(u). ù

2.4. Elementary Examples of Higher Inductive Types

Before we dwell into a theory of higher inductive types, let us consider some ex-
amples and try to explain what they mean.

2.4.1. Interval Type. One can form an interval type I . We have two constructors
0 : I and 1 : I , and we must have a path seg : 0 1. This means that we have two
introduction rules 0 : I and 1 : I . Furthermore, we must have the introduction rule
seg : 0 1., and we have the elimination rule

Γ , x : I ` Y [x] : TYPE Γ ` p0 : Y [0/x] Γ ` p1 : Y [1/x] Γ ` h : p0 Y
seg p1

Γ ` Irec(p0, p1, h) :
∏

x : I .Y [x]
with the computation rule Irec(p0, p1, h)0 = p0 and Irec(p0, p1, h)1 = p1. Also, it is
required that apd(Irec(p0, p1, h), seg) = h. We see 0 and 1 as the endpoints of I , and
seg is the line between 0 and 1, and that is why we call this type the interval.

Definition 2.4.1 (Contractible Type). Suppose Γ ` A : TYPE. Then A is called con-
tractible iff there is a term c of the type

Γ ` c :
∑

x : A
∏

y : A.x y. ù

Just as in topology, the interval is contractible, and it can be contracted to 0.

Lemma 2.4.2. The type I is contractible.

PROOF. We say that we can contract the interval to 0, so we need to make a function
of f :
∏

y : A.0 y which is made using Irec. First, we need to give p0 : 0 0
and p1 : 0 1, and we take p0 = refl0 and p1 = seg. Now we need a path h :
refl0 Y

seg seg, so we need a path seg∗(refl0) seg. Recall that by Lemma 2.3.6 we
have seg∗(refl0) = seg, and thus we can take the path reflseg. The desired inhabitant is
(0, Irec(refl0, seg, reflseg)). �

2.4. ELEMENTARY EXAMPLES OF HIGHER INDUCTIVE TYPES 13

With a similar proof one can show that the interval can be contracted to 1 for which
the contraction is (1, Irec(refl1, seg, reflseg)). Another similarity is that paths can be seen
as functions from I to the type. Suppose, we have a type A and x , y : A. Then we have
a map I → A sending 0 to x and 1 to y iff we have an inhabitant of x y . From left to
right one uses ap(f , seg), and from right to left one can use induction on the interval.

2.4.2. Circle Type. Another type is the circle S1, and now we have only one con-
structor base and one equality loop : base base. So, in this case we have one intro-
duction rule base : S1, and we have an elimination rule

Γ , x : S1 ` Y [x] : TYPE Γ ` p : Y [base/x] Γ ` h : p Y
loop p

Γ ` Srec(p, h) :
∏

x : S1.Y [x]
with Srec base= p and apd(Srec(p, h), loop) = h.

This type must also have an equality base base, and one might wonder why not
every type is a circle type. One always has such an equality, namely reflexivity, so it
seems to be trivial. However, if there is a path loop refl, then all identity proofs are
equal to refl. This is because reflbase must be mapped to reflp, so one cannot map this
equality to a nontrivial path. If we have x : A and a path p : x x , then we have
Srec(x , p) which sends loop to p. A path between loop and refl gives a path between p
and refl, and therefore every identity proof is equal to refl.

CHAPTER 3

Categorical Interpretation

If logic only had syntax, then it would be a rather sterile field of mathematics.
Therefore, instead of just studying the syntax one should also look at the semantics.
One possible way of giving type theory semantics is by using category theory. The
notion of a category was invented by Eilenberg and MacLane to give a formal language
for homology and cohomology theories [EM45]. In later years it was developed to be
used for more fields of mathematics. For example, Kan gave the definitions of adjoint
functors [Kan58] which are crucial for category theory. In this section we will recall
the basic definitions of category theory, and say how type theory can be interpreted
in category theory. All proofs are left to the reader. Our presentation is based on
[ML78, MLM92].

3.1. Basic Definitions and Examples

Definition 3.1.1 (Category). A category consists of a collection C0 of objects and a col-
lection C1 of morphisms. Furthermore, we require that we have operations dom, cod :
C1 → C0, an operation id· : C0 → C1 and an operation ◦ : {(f , g) : C1 × C1 :
cod(g) = dom(f)} written as f ◦ g. Let us write Hom(A, B) = { f ∈ C1 | dom(f) =
A and cod(f) = B}. All this data is required to satisfy the following requirements

(1) f ◦ (g ◦ h) = (f ◦ g) ◦ h;
(2) f ◦ idA = idA ◦ f = f ;
(3) Each Hom(A, B) is a set. ù

Elements of C1 are called arrows or morphism, and we use the notation f : A→ B

or A
f
//B for an arrow f with dom(f) = A and cod(f) = B. A diagram in C is a

graph of arrows of C , and we say that it commutes iff all paths with the same start and
endpoint lead to the same composition. We call an arrow f : A→ B an isomorphism iff
there is g : B→ A such that f ◦ g = idB and g ◦ f = idA. A section of an arrow f : A→ B
is an arrow s : B→ A such that f ◦ s = idA.

Examples of categories are the category Top of topological spaces with continuous
functions or Sets with sets as object and functions as morphism. Many other examples
can be found including the slice category.

Definition 3.1.2 (Slice Category). Given a category C and an object A ∈ C0, we can
define the slice category C /A to be the category with objects arrows C → A and the
morphisms are commutative triangles

C //

��

D

��
A

ù

15

16 3. CATEGORICAL INTERPRETATION

Maps between categories are called functors. These should preserve the structure
of the category.

Definition 3.1.3 (Functor). Given two categories C and D a functor consists of a map-
ping F0 :C0→D0 and a mapping F1 :C1→D1 such that

(1) For f : A→ B we have F1(f) : F0(A)→ F0(B);
(2) F1(f ◦ g) = F1(f) ◦ F1(g);
(3) F1(idA) = id(F1(A)). ù

We will write F(A) instead of F0(A) and F(f) instead of F1(f). In the next section
we will give many examples of functors. Using functors we can give another important
example of a category.

Definition 3.1.4 (Algebras of a Functor). Let F be a functor. Then an algebra for F is
an arrow F(A)→ A. ù

The algebras of a functor F form a category where the morphisms are commutative
squares

F(A)
F(f)
//

��

F(B)

��

A
f

// B

3.2. Constructions

Let us start with products and coproducts.

Definition 3.2.1 (Product). Let C be a category and let A and B be objects. Then we
say C is a product of A and B iff we have p1 : C → A and p2 : C → B such that for arrows
f : X → A and g : X → B there is a unique arrow h : X → C such that p1 ◦ h = f and
p2 ◦ h= g. In a diagram this is written as

X
f

��

g

��

h
��

A Cp1

oo
p2

// B

ù

Note that products are unique up to unique isomorphism meaning that whenever
C and D are both products of A and B, then there is a unique isomorphism C → D. If
A and B have a product, then we denote it by A× B.

Definition 3.2.2 (Coproduct). Let C be a category and let A and B be objects. Then
we say C is a coproduct of A and B iff we have ι1 : A→ C and ι2 : B→ C such that for
arrows f : A→ X and g : B→ X there is a unique arrow h : C → X such that h ◦ ι1 = f
and h ◦ ι2 = g. In a diagram this is written as

X

A
ι1
//

f
??

C

h

OO

B
ι2
oo

g
__

ù

3.2. CONSTRUCTIONS 17

Coproducts are unique up to unique isomorphism as well, and the coproduct of A
and B is denoted by A+ B whenever it exists. In Sets every two sets have a product,
namely the product of sets, and a coproduct which is the disjoint sum. Now we can
discuss initial objects and terminal objects.

Definition 3.2.3 (Initial Object). LetC be a category, and let A be an object ofC . Then
we say that A is an initial object iff for all objects C we have #(Hom(A, C)) = 1. ù

Definition 3.2.4 (Terminal Object). Let C be a category, and let A be an object of C .
Then we say that A is an initial object iff for all objects C we have #(Hom(A, C)) = 1. ù

Initial objects and terminal objects are unique up to unique isomorphism as well.
We denote the initial object by 0 and the terminal object by 1 whenever they exist. Let
us now discuss an important example of initial objects, namely initial algebras.

Definition 3.2.5 (Initial Algebra). Let F be a functor. Then we say some algebra
F(A) → A is the initial algebra of F iff it is the initial object of the category of alge-
bras of F . ù

Suppose, C is a category with an initial object and coproducts. Define F :C →C
to be the functor with F(A) = 1 + A. An algebra of F is an arrow 1 + A → A, so we
have an arrow 0A : 1 → A and an arrow SA : A→ A. If F has an initial algebra, then
this algebra is called a natural numbers object of C . Let us assume that F indeed has
an initial algebra, and let us denote it by N . Since N is an algebra, we have arrows
0N : 1→ N and SN : N → N . To map N to any object X , we need to give 0X : 1→ X
and SX : X → X . In Sets the natural numbers object is the natural numbers N, and the
induction is given by the fact that the algebra is initial.

Another construction is called the pullback or fiber product.

Definition 3.2.6 (Pullback). Let C be a category and suppose we have arrows f : A→
C and g : B → C . Then we say P is a pullback iff we have p1 : P → A and p2 : P → B
such that

• f ◦ p1 = g ◦ p2.
• For all h1 : X → A and h2 : X → B such that f ◦ h1 = g ◦ h2, there is a unique

k such that k ◦ p1 = h1 and k ◦ p2 = h2.
This can be depicted as follows

X
h2

''
h1

��

k
��

P p2

//

p1

��

B

g

��

A
f
// C

ù

Often we indicate pullbacks in a square as follows

P //

��

B

��

A // C

18 3. CATEGORICAL INTERPRETATION

or we write P = A×C B. It is more logical to call it the fiber product, because it can
be used to give the fiber (preimage) of a map. However, the terminology ‘pullback’ is
more common, so we will call it that. Next we can define pushouts.

Definition 3.2.7 (Pushout). LetC be a category and suppose we have arrows f : C → A
and g : C → A. Then we say P is a pushout iff we have ι1 : A→ P and ι2 : B→ P such
that

• ι1 ◦ f = ι2 ◦ g.
• For all h1 : A→ X and h2 : B→ X such that h1 ◦ f = h2 ◦ g, there is a unique

k such that ι1 ◦ k = h1 and ι2 ◦ k = h2.
In a diagram this looks like

C
f
//

g

��

A

ι1

��
h1

��

B
ι2 //

h2
''

P

k
��

X
ù

In a diagram we indicate a pushout as follows

A //

��

C

��

B // P

and we write P = B
∐

A C . So, if the maps are clear from the context, then we denote
the pullback of A and B by A×C B and the pushout by A

∐

C B. Another construction
generalizes quotients and it is called the coequalizer.

Definition 3.2.8 (Coequalizer). LetC be a category and suppose we have arrows f , g :
A→ B. Then we say c : C → A is a coequalizer of f and g iff for all h : X → A there is a
unique k : X → C such that h= c ◦ k. ù

Up to now we have described constructions by giving a universal mapping property.
Adjoint functors allow different constructions. For this we first need the definition of a
natural transformation.

Definition 3.2.9 (Natural Transformation). Let F, G : C → D be two functors, and
suppose that for each object A of C we have a map ηA : F(A) → G(A). Then we say
that η· is a natural transformation iff for all arrows f : A→ B the following diagram
commutes

F(A)
ηA //

F(f)
��

G(A)

G(f)
��

F(B)
ηB

// G(B)

ù

All constructions so far can be said in the language of limits and colimits. We will
only discuss colimits, and for that we first need to define cocones.

3.2. CONSTRUCTIONS 19

Definition 3.2.10 (Cocone). Let I be a category and let F : I →C be a functor. A cocone
on I is a diagram consisting of an object X of C and morphisms gi : F(i)→ X for every
object i of I such that the following diagram commutes for every arrow f : i→ j

F(i)
F(f)

//

gi
!!

F(j)

g j
}}

X

ù

Note that we can talk about a category of cocones on F .

Definition 3.2.11 (Colimit). Let I be a category and let F : I →C be a functor. Then
the colimit of F is defined as the initial object in the category of cocones on F if it
exists. ù

In a similar way limits can be defined. Coproducts, pushouts, coequalizers and
initial objects are examples of colimits. Some constructions cannot be defined as limits
or limits, but instead one needs the notion of an adjoint functor.

Definition 3.2.12 (Adjoint). Let C and D be categories, and let F : C → D and
G : D →C be functors. Then we say that F and G are an adjoint pair, denoted by F a G,
iff for all objects A of C and all objects B of D the sets Hom(A, G(B)) and Hom(F(A), B)
are isomorphic. This isomorphism is required to be a natural transformation. ù

Adjoints do not have to exist. In this situation F is called the left adjoint and G is
called the right adjoint.

Definition 3.2.13 (Exponential). Let C be a category with products, and let A be an
object of C . Then the exponential (·)A is the right adjoint of the functor · ×A whenever
it exists. ù

The exponential gives the functions from A to C .

Definition 3.2.14 (Cartesian Closed). A category C is called cartesian closed iff it has
all products and for all A the exponential (·)A exists. ù

Definition 3.2.15 (Locally Cartesian Closed). A category C is called locally cartesian
closed iff for all objects A the slice category C /A is cartesian closed. ù

There are many examples of locally cartesian closed categories. For example, every
topos is locally cartesian closed [MLM92], and thus Sets is locally cartesian closed.

Let us discuss a condition which shows the existence of initial algebras, and for
that we start with a requirement on functors.

Definition 3.2.16 (Polynomial Functor). Let C be a category with all products and
coproducts. The notion polynomial functor onC is defined inductively. First of all, every
constant functor F(X) = A is a polynomial functor, and the identity functor F(X) = X is
a polynomial functor. Furthermore, if we have two polynomial functors F and G, then
both F×G and F

∐

G are polynomial functors as well. Here (F×G)(X) = F(X)×G(X)
and (F
∐

G)(X) = F(X)
∐

G(X). ù

Polynomial functors have initial algebras if the category satisfies some conditions.

Theorem 3.2.17. If C is a cartesian closed category which has all limits and colimits,
then every polynomial functor F :C →C has an initial algebra.

20 3. CATEGORICAL INTERPRETATION

This can be proven as follows. Using the fact that C is cartesian closed, one can
prove that F commutes with colimits and limits. The initial algebra is then defined as
the colimit of the diagram

0 // F(0) // . . . // F (n)(0) // . . .

Now we can give the definitions in which we will interpret type theory.

Definition 3.2.18 (Martin-Löf Category). A category C is called a Martin Löf category
iff the following requirements are satisfied

(1) It is locally cartesian closed;
(2) It has all limits;
(3) It has all colimits. ù

3.3. Interpreting Type Theory

Our goal is to give interpretations of type theory in the language of category the-
ory, and our presentation is based on [AW09]. For this we need to interpret dependent
sums, dependent products and inductive types in a category. So, in this complete sec-
tion we will assume that C is a fixed Martin-Löf category, and our goal is to interpret
type theory in C . In this interpretation types are interpreted as objects and terms as
morphisms.

To do this, we first need to recall the basic statements, and then give an interpre-
tation for those When these have an interpretation, we can continue by interpreting
more complicated types like ⊥, >, product types and so on. However, for these types
certain rules need to be satisfied. For example, the product type has an introduction
rule

Γ ` a : A Γ ` b : B
Γ ` (a, b) : A× B

To interpret this, we assume that we have interpretations of Γ ` a : A and Γ ` b : B.
Using this data, we need to make an interpretation of Γ ` (a, b) : A× B. In this fashion
we can make interpretations of all desired types. Most arguments are similar, so we
give a sketch and leave the details as an exercise for the reader.

In type theory we have three basic statements. First, we can say that A is a type
which is written as Γ ` A : TYPE. Secondly, we can say that t is a term of type A and that
is denoted as Γ ` t : A. This statement only makes sense if we have Γ ` A. Lastly, we
can say that two terms t and t ′ are equal if they are of the same type, and we denote
this by Γ ` t = t ′.

Let us start by interpreting Γ ` A : TYPE, and we will interpret this as a chain of
arrows. To do this, we need to use induction on Γ . The statement · ` A : TYPE is
interpreted as the arrow ¹Aº → 1 to the terminal object. Recall that we work in a
category which has a terminal object, so this makes sense. Now suppose that Γ is x1 :
A1, . . . , xn : An, and that Γ ` A : TYPE is interpreted as a chain of arrows Bn→ . . .→ B0.
Then we interpret Γ , xn+1 : An+1 ` A : TYPE as the chain ¹An+1º→ Bn → . . .→ B0. So,
in particular the statement x1 : A1, . . . , xn : An ` A : TYPE is interpreted as the chain
¹Aº → ¹Anº → . . . → ¹A1º. We will write the interpretation of Γ ` A : TYPE often as
¹Aº→ ¹Γº.

Let us have a short intermezzo to explain why this makes sense, and for that we
briefly describe how to interpret these statements in the category Sets. Then we see

3.3. INTERPRETING TYPE THEORY 21

¹A2º as a family {X i}i∈¹A1º
, and we have a projection sending x ∈ X i to i. Intuitively this

explains why this interpretation makes sense, because it has the right dependencies.
Secondly, if we have x1 : A1, . . . , xn : An ` A : TYPE, then x1 : A1, . . . , xn : An ` t : A

is interpreted as an arrow ¹tº which is a section of the arrow ¹Aº→ ¹Anº given by the
interpretation of x1 : A1, . . . , xn : An ` A : TYPE. We interpret x1 : A1, . . . , xn : An ` A :
TYPE as a chain of arrows ¹Aº→ ¹Anº→ . . .→ ¹A1º, so we have an arrow ¹Aº→ ¹Anº,
and a term of A is a section of this arrow. This means that ` t : A is interpreted as an
arrow 1→ ¹Aº. Definitional equality is interpreted as equality between arrows.

Now we get to the more interesting part: how can we interpret more complicated
types. This will also clarify the definitions. Let us start with the zero type.

Definition 3.3.1 (Interpretation of the Zero Type). The zero type ⊥ is interpreted as
the initial object of the category. ù

Why does this make sense? The formation rule says ` ⊥ : TYPE. This needs to hold,
so we need an arrow 0→ 1 which we have if the category has an initial and a terminal
object. There are no introduction rules, but the elimination rule says x : ⊥ `!C(x) : C .
Since we have x : ⊥ ` C : TYPE, we can assume we have an arrow C → 0. We need to
make a section, so an arrow 0→ C , and since 0 is initial, we have such an arrow. For
it to be a section we need that the composition 0→ C → 0 is the identity, and that is
the case.

Definition 3.3.2 (Interpretation of the Unit Type). The unit type > is interpreted as
the terminal object of the category. ù

The reasoning that this makes sense, is similar. Again the formation rule holds,
because the category is assumed to have a terminal object. Now we only need to verify
the introduction rule

Definition 3.3.3 (Interpretation of Product Types). The type A×B is interpreted as the
product of ¹Aº and ¹Bº. ù

The formation rule holds, because we have products in our category. The elimina-
tion rules hold as well. Suppose, we have an arrow ¹Aº× ¹Bº → ¹Γº with a section
¹xº : ¹Γº→ ¹Aº× ¹Bº. Then we get arrows ¹Γº→ ¹Aº and ¹Γº→ ¹Bº, because we
have projections p1 : ¹Aº×¹Bº→ ¹Aº and p2 : ¹Aº×¹Bº→ ¹Bº. Lastly, for the intro-
duction rule we assume that we have sections ¹aº : ¹Γº→ ¹Aº and ¹Bº : ¹Γº→ ¹Bº.
By the universal property we then get an arrow ¹(a, b)º : ¹Γº→ ¹Aº× ¹Bº of which
the first projection is ¹aº and the second projection is ¹bº. Hence, all the given rules
are satisfied, and thus ¹Aº × ¹Bº is the product type. Similarly, we can interpret the
sum type as coproduct.

Definition 3.3.4 (Interpretation of Sum Types). The type A+ B is interpreted as the
coproduct of ¹Aº and ¹Bº. ù

Another interesting example are function types, because there are interpreted as
exponentials. So, we interpret these as the right adjoint of the product.

Definition 3.3.5 (Interpretation of Function Types). The type A⇒ B is interpreted as
the exponential BA. ù

Because we assume the category has all exponentials, the formation rule holds.
Let us now show that the introduction rule holds. Since we have the premise Γ , x : A`

22 3. CATEGORICAL INTERPRETATION

f (x) : B we have an arrow A→ B. Note that this gives an arrow Γ × A→ A→ B by
composing with the second projection. By adjunction we have

Hom(Γ × A, B)∼= Hom(Γ , BA),

and thus we get an arrow Hom(Γ , BA) which is what we needed.
For the elimination rule we assume to have arrows Γ → A and Γ → BA. Note that

this gives an arrow Γ → BA × A. We have an arrow idBA : BA → BA, and we have by
adjunction that

Hom(BA, BA)∼= Hom(BA× A, B).

So, the arrow idBA gives an arrow ε : BA × A → B. Since we already have an arrow
Γ → BA× A, we get an arrow Γ → B which is what we wanted.

In Sets the set BA consists of all functions A→ B, and the arrow ε sends a pair (f , a)
to f (a). This means that here it is indeed the application. Also, if we have a function
f : A→ B, then the isomorphism sends it to the map f in the function set.

3.3.1. Dependent Products and Dependent Sums. So far we did not use that the
category is locally cartesian closed. We only used that it is cartesian closed. However,
to interpret dependent products and dependent sums we will need that the category is
locally cartesian closed. Let us discuss some notation first. Given an arrow f : B→ A,
we can make a functor f ∗ : C /A → C /B, called the pullback along f or reindexing
along f . An arrow g : C → A is sent to h where we have the following pullback square

P //

h
��

C

g

��

B
f
// A

Here we assume that we have a pullback functor meaning that we need to choose the
pullback for each diagram. With this notation we can give the following theorem.

Theorem 3.3.6. A category is locally cartesian closed iff for all arrows f the functor f ∗

has both a left adjoint and a right adjoint.

We are working in a category C which is locally cartesian closed. Hence, every
pullback functor has both a left adjoint and a right adjoint. Note that to show that
∏

x : A.B[x] or
∑

x : A.B[x] is a well-founded type, we need to show that x : A `
B[x] : TYPE. So, we have an arrow f : ¹Bº→ ¹Aº.

Definition 3.3.7 (Interpretation of Dependent Product). We interpret the dependent
product
∏

x : A.B[x] is interpreted as the right adjoint of the pullback along f where
f : ¹Bº→ ¹Aº is the interpretation of x : A` B[x] : TYPE. ù

Definition 3.3.8 (Interpretation of Dependent Sum). The dependent sum
∑

x : A.B[x]
is interpreted as the left adjoint of the pullback along f where f : ¹Bº → ¹Aº is the
interpretation of x : A` B[x] : TYPE. ù

We leave it as an exercise to the reader to verify that this definition makes sense.
Most of the rules can be checked, but for the computation rules one needs the Beck-
Chevalley condition for which we refer the reader to [MLM92]. Examples of possible
universes in which all these conditions hold, are toposes like Sets or presheaf categories.

3.3. INTERPRETING TYPE THEORY 23

3.3.2. Inductive Types. Inductive Types are interpreted using initial algebras. We
can either describe an inductive type as a W -type or by giving constructors, and in this
section we chose the latter approach. So, we define an inductive type T as follows

Inductive T :=
| c1 : H1(T)→ T
. . .
| cn : Hn(T)→ T

where every Hi is a polynomial functor in T . The introduction rules are ci(x) : T where
x : Hi(T). Also, we have an elimination rule, namely

Γ , x : T ` Y (x) : TYPE Γ ` zi :
∏

x : Hi(T).Hi(Y)[x]→ Y (ci x) for i = 1, . . . , k

Γ ` T -elim(z1, . . . , zk) :
∏

x : T.Y (x)
To give an interpretation of T , we start by defining an endofunctor FT on C . Note

that every Hi is a polynomial functor, so we can define a polynomial functor FT (X) =
H1(X)
∐

. . .
∐

Hn(X). We interpret T as the initial algebra of FT and we denote it by
¹Tº.

Since ¹Tº is an algebra of FT , we have the required introduction rules. Also, the
elimination rule is satisfied, because T is initial. The elimination rule basically says that
if we have any other algebra of FT , then we can map T into it, and this follows from
the fact that ¹Tº is initial.

CHAPTER 4

Higher Inductive Types

4.1. CW-Complexes

In topology, the notion of a CW-complex is very important [May99, Hat02]. These
are the topological spaces that are built from the cells In = {(x1, . . . , xn) ∈ Rn | x i ∈
[0, 1]}. To build CW-complexes, we need the notion of gluing, which can be defined
using pushouts. The idea of constructing a CW-complex X is as follows. We start with
a number of copies of I0, so a discrete space. Afterwards we glue copies of I1, I2 and
so on, which are glued increasing in dimension. This gives approximations X0, X1, . . .
with X =
⋃

i∈N X i .
Let us describe this more formally for which first we recall some notation. In the

remainder of this section we work in the category of topological spaces with continuous
maps. The boundary of an interval ∂ (I1) is defined by {0,1}, and the boundary ∂ (In)
of an n-cube is defined by {(x1, . . . , xn) | x i ∈ {0,1} for some i}. If we have a map
d : ∂ (In)→ X , then we can glue In to X via the following pushout.

∂ (In) d //
� _

��

X

��

In // P

The pushout P is the space X
∐

In where x and d(x) are identified for all x ∈ ∂ (In).
This defines the gluing required in the construction.

To build a CW-complex, we start with a collection J0 of points, and we define X0
by
∐

x ∈ J0.I0. The next space X1 is obtained from X0: we need a collection J1 and for
each j ∈ J1 a boundary map d1

j : ∂ (I1)→ X0. We define X1 as the following pushout.

∐

j ∈ J1.∂ (I1)
∐

j∈J1.d1
j
//

� _

��

X0

��
∐

j ∈ J1.I1
f

// X1

Note that in X1 we have lines with endpoints given by the d1
j : for each j ∈ J we have

the map f ◦ ι j where ι j : I1→
∐

j ∈ J1.I1 sends I1 to the jth copy of I1. The endpoints
of this map are given by d1

j , because the square commutes. This means that for every
j ∈ J1 there is a line in X1 whose endpoints are given by d1

j . So, the construction says
that we add lines with endpoints given by the d1

j .
For X2 we add squares to X1 in a similar way. We need to give a collection of

squares, and describe their desired ‘endpoints’. For each square we thus need to de-
scribe what the boundary is mapped to, and that is given by a map ∂ (I2)→ X1. So, we

25

26 4. HIGHER INDUCTIVE TYPES

have a collection J2 and for each j ∈ J2 a boundary map d2
j : ∂ (I2)→ X1, and then X2

is the following pushout

∐

j ∈ J2.∂ (I2)
∐

j∈J2.d2
j
//

� _

��

X1

��
∐

j ∈ J2.I2 // X2

This can be done for every dimension which is captured in the following definition

Definition 4.1.1 (CW-Complex). Suppose, X is a topological space. Then we say X is
a CW-complex iff we have a sequence of inclusions X0 ⊆ X1 ⊆ X2 ⊆ . . . ⊆ X , sets Jn for
each n ∈ N, and continuous maps dn

j : ∂ (In)→ Xn such that

• X =
⋃

n∈N Xn.
• For each n there are maps In → Xn+1 for each j ∈ Jn such that the following

diagram is a pushout

∐

j ∈ Jn.∂ (In)
∐

j∈Jn.dn
j
//

� _

��

Xn

��
∐

j ∈ Jn.In // Xn+1

This means that for each j ∈ Jn we added a n-cube to Xn+1 with the endpoints
given by the dn

j . ù

4.2. Intervals

The main idea is that higher inductive types are constructed in the same way as
CW-complexes in topology. For CW-complexes we start with a set of points, then we
glue some intervals, then we glue some squares and so on. Higher inductive types are
made by adding equalities to some type. Since x y in a type T corresponds with
a map I1 → T which sends 0 to x and 1 to y , we see that higher inductive types are
made by gluing intervals. Note that for CW-complexes the In are added in order of
their dimension, but for a higher inductive type we will not require that.

4.2.1. Intervals in Type Theory. The interval types are thus fundamental in our
presentation, and we start by defining them. These are particularly simple higher in-
ductive types, and we are able to give their introduction, elimination and computation
rules directly. We define In inductively, so we start by defining I0 and then we define
In+1 from In.

Definition 4.2.1. We define I0 as the type

Inductive I0 :=
| ∗ : I0

This type has one introduction rule
∗ : I0.

Also, it has one elimination rule

Γ , x : I0 ` Y [x] : TYPE Γ ` z : Y [∗]
Γ ` I0-elim(z) :

∏

x : I0.Y [x]

4.2. INTERVALS 27

and a computation rule, namely

I0-elim(z)∗= z. ù

Recall that I1 was defined as follows

Inductive I1 :=
| 0 : I1

| 1 : I1

| seg : 0 1

This type has three introduction rules, namely 0 : I1, 1 : I1 and seg : 0 1. Using the
notation of Definition 2.3.7 and Proposition 2.3.8, we can formulate the elimination
rule of I1

Γ , x : I1 ` Y [x] : TYPE Γ ` z : Y [0] Γ ` o : Y [1] Γ ` s : z Y
seg o

Γ ` I1-elim(z, o, s) :
∏

x : I1.Y [x]
together three computation rules

I1-elim(z, o, s)0= z,

I1-elim(z, o, s)1= o,
apd(I1-elim(z, o, s), seg) = s.

Note that I1-elim(z, o, s) is of type
∏

x : I1.Y [x], so I1-elim(z, o, s)0 is of type Y [0] and
I1-elim(z, o, s)1 is of type Y [1]. Since z : Y [0] and o : Y [1], the first two computation
rules preserve types. Also, if f :

∏

x : A.B[x] and p : x y with x : A and y : A, then
we have apd(f , p) : f x Y

seg f y . From this and the first two computation rules we
can deduce that apd(I1-elim(z, o, s), seg) : z Y

seg o, so the third rule preserves types as
well.

To define In+1, we imitate the definition of I1.

Definition 4.2.2. We define the type In+1 as follows

Inductive I n+1 :=
| 0 : I n→ I n+1

| 1 : I n→ I n+1

| seg :
∏

x : I n.0 x 1 x

The elimination rule is Γ , x : In+1 ` Y [x] : TYPE where the terms z, o and s depend on
x : In.
Γ , x : In ` z : Y [0 x] Γ , x : In ` o : Y [1 x] Γ , x : In ` s : z[x] Y

seg x o[x]

Γ ` In+1-elim(z, o, s) :
∏

x : In+1.Y [x]
and we have three computation rules for a term t : In

In+1-elim(z, o, s)(0 t) = z[t],

In+1-elim(z, o, s)(1 t) = o[t],
apd(In+1-elim(z, o, s), seg t) = s[t]. ù

Again we have that In+1-elim(z, o, s) is of type
∏

x : In+1.Y [x], and thus for all
t : In the terms In+1-elim(z, o, s) (0 t) and In+1-elim(z, o, s) (1 t) are of types Y [0 t] and
Y [1 t] respectively. For all t : In we have z[t] : Y [0 t] and o[t] : Y [1 t], so the first two
rules preserve types. Since apd(In+1-elim(z, o, s), seg t) and s t are of types z[t] Y

seg t

o[t] and z[t] Y
seg t o[t] respectively, we can conclude using the first two rules that the

third rule preserves types as well.

28 4. HIGHER INDUCTIVE TYPES

4.2.2. Interpretation of Intervals. Our goal is to define when a Martin-Löf cat-
egory C with all inductive types has an interpretation of all interval types. For this
we first define inductively how we interpret In for all n. Note that I0 has an in-
terpretation ¹I0

º, because I0 is an inductive type. Also, for x : A and y : A we
can find an interpretation ¹x yº of x y . A map h : A → B gives a map
¹ap(h,−)º : ¹x yº → ¹h x h yº. This is because x y is an inductive type
which always have an interpretation in C .

For the inductive step we assume that we have an interpretation ¹In
º of In, and

our goal is to make an interpretation ¹In+1
º of In+1. So, suppose that we have an

object ¹In
º which satisfies all the rules of the type In. To make an interpretation of

In+1 we need maps ι1, ι1 : ¹In
º → ¹In+1
º, because these give the introduction rules.

For the elimination and computation rules, we require the commutativity and existence
of maps, and this is given in the following definition.

Definition 4.2.3. Suppose, C is a Martin-Löf category, and let n be a natural number
greater than 0. Then we say that C has an interpretation of In+1 iff

• C has an interpretation ¹In
º of In.

• C has an object ¹In+1
º with maps ι0, ι1 : ¹In

º→ ¹In+1
º, and s : 1→ ¹ι0

ι1º.
• For each f , g : ¹In

º→ Y and p : ¹ f gº there is a map h : ¹In+1
º→ Y such

that the following two diagrams commute

¹In
º

∐

¹In
º

f
∐

g
//

ι0
∐

ι1 &&

Y

¹In+1
º

h

OO

1
s //

p
##

¹ι0 ι1º

¹ap(h,−)º
��

¹ f gº

Note that we have an interpretation of I0, because it is an inductive type. ù

Now we can say when all intervals are interpreted in some Martin-Löf category.

Definition 4.2.4. Suppose, C is a Martin-Löf category that interprets every inductive
type. Then we say that C interprets every interval iff it has an interpretation of In for
every n≥ 1 as in the preceding definition. ù

4.3. Basic Introduction of Higher Inductive Types

Higher inductive types are interpreted by gluing intervals, and our next step is to
give a formal definition. However, before diving into formalities, let us first discuss the
basic idea and the challenges. To define a higher inductive type T , one first needs to
give an inductive type using constructors c : H(T)→ T . Then we add paths of types like
∏

x : A
∏

y : B. f x g y which says that for every x : A and y : B we can construct a
path p(x , y) between f x and g y . Here A and B are types, and f x and g x are terms
of type T . Since we will allow parameters in our type definitions, A and B can depend
on the parameters.

4.3. BASIC INTRODUCTION OF HIGHER INDUCTIVE TYPES 29

However, what is allowed in these rules? There are several issues, and the first
one is recursion. If we are making a type T , then we might want to add the rule
p :
∏

x : T
∏

y : T.x y Types with such rules will be called recursive higher inductive
types. An example of such a type is the truncation

Inductive ||A|| (A : TYPE) :=
| ι : A→ ||A||
| p :
∏

x : ||A||
∏

y : ||A||.x y

This definition says that for every x : ||A|| and y : ||A|| we have a path x y . However,
gluing an interval might add new points in some interpretations, and this gives the first
problem. We need to make sure that for every x : ||A|| and y : ||A|| we have a path
x y , and if we just add the intervals between the points of A, then we are not sure
about the new points.

Higher inductive types without recursion are called nonrecursive higher inductive
types. Even for these types there are complications, and these come from the construc-
tors. To understand why, we consider the following example.

Inductive N/2N :=
| 0 : N/2N
| S : N/2N→ N/2N
| p : 0 S (S 0)

With just the first two constructors we get the type N of the natural numbers. The
third rule says that we get a path p between 0 and S (S 0). Since we can apply func-
tions on paths via ap, we get a path ap(S, p) between S 0 and S (S (S 0)). So, for the
interpretation we need to take that in consideration, because otherwise we do not have
enough paths. Furthermore, after all these paths are added, there still needs to be a
map S : N/2N. In the category of topological spaces, adding a path adds new points,
and somehow we need to determine where these are mapped to.

We will deal with these problems step by step. We start by giving higher induc-
tive types where the only inductive constructors are point constructors. Furthermore,
recursion in the paths will not be allowed. Next we allow more inductive construc-
tors. Finally, we give a definition for recursive higher inductive types. Also, we give an
interpretation of all nonrecursive higher inductive types, but not for recursive higher
inductive types.

Let us give some intuition about the interpretation. We work in a Martin-Löf cat-
egory C which interprets all inductive types and all intervals, and we will denote the
interpretation of In by In to simplify the notation. To interpret a higher inductive type,
we start with interpreting an inductive type, and then we need to add equalities. Since
paths between n-paths correspond with maps In+1 → T , adding a path is the same as
adding a map In → T . So, to add an equality between two maps x , y : In → T , we
consider the following pushout

In
∐

In x
∐

y
//

ι0
∐

ι1
��

T

h

��

In+1
e
// P

Recall that a map I0→ T corresponds with an inhabitant of T , and that a map In+1→ T
corresponds with an equality between two maps In→ T . Note that we have T → P, so

30 4. HIGHER INDUCTIVE TYPES

every constructor of T is also a constructor of P. Also, since we have a map e : In+1→ P
with e ◦ ι0 = h(x) and e ◦ ι1 = h(y), we have an equality between h(x) and h(y) in P,
so P has the required constructors.

For higher inductive types the introduction rules are not difficult, but the elimina-
tion rule is. However, using this intuition we will give an elimination rule. The universal
property of the pushout can be used to give an elimination rule for P, because a map
P → Y corresponds with two maps f : In+1→ Y and g : X → Y such that the following
diagram commutes

In
∐

In x
∐

y
//

ι0
∐

ι1
��

X

g

��

��

In+1

f
((

// P

��

Y

4.4. Higher Inductive Types from Points

In this section we give a first kind of higher inductive types. These do not allow
recursive, and in 0-constructors we only allow point constructors. For the definition we
need the following notation.

Definition 4.4.1. Let T be a type and let x1 : A1, . . . , xn : An be variables. We define
T (x1, . . . , xn) to be the collection of terms with type T using x1, . . . xn as free variables.
So, to make a term t from T (x1, . . . , xn), we need to prove the judgement

x1 : A1, . . . , xn : An ` t : T. ù

Now we formally define the syntax of these higher inductive types, and give their
introduction and elimination rule.

Definition 4.4.2 (Higher Inductive Type from Points). A higher inductive type from
points is defined according to the following syntax

Inductive T (B1 : TYPE) . . . (B` : TYPE) :=
| ∗1 : T
. . .
| ∗k : T
| p1 :
∏

x : A1.F1[x ,∗1, . . . ,∗k] G1[x ,∗1, . . . ,∗k]
. . .
| pn :
∏

x : An.Fn[x ,∗1, . . . ,∗k, p1, . . . , pn−1] Gn[x ,∗1, . . . ,∗k, p1, . . . , pn−1]

Let us write Fi = Fi[x ,∗1, . . . ,∗k, p1, . . . , pi−1] and Gi = Gi[x ,∗1, . . . ,∗k, p1, . . . , pi−1].
Also, we assume that we have types B1, . . . , B` : TYPE, and we denote T (B1, . . . , B`) by
T . We require that Fi and Gi are terms in (I di → T)(x ,∗1, . . . ,∗k, p1, . . . , pi−1) with
variables x : Ai , ∗ j : T and

p j :
∏

x : A j .F j[x ,∗1, . . . ,∗k, p1, . . . , p j−1] G j[x ,∗1, . . . ,∗k, p1 . . . , p j−1].

The fact that Fi and Gi are terms in (I di → T)(x ,∗1, . . . ,∗k, p1, . . . , pi−1), means that we
have the judgements with x : Ai

∗1 : T, . . . ,∗k : T, p1 :
∏

y : A1.F1 G1, . . . , pi−1

∏

y : Ai−1.Fi−1 Gi−1 ` Fi : I di → T,

4.4. HIGHER INDUCTIVE TYPES FROM POINTS 31

∗1 : T, . . . ,∗k : T, p1 :
∏

y : A1.F1 G1, . . . , pi−1

∏

y : Ai−1.Fi−1 Gi−1 ` Gi : I di → T,

Furthermore, we require that Ai is any type depending on B1, . . . B` in Martin-Löf type
theory with higher inductive types.

The introduction rules for the points are

Γ ` ∗i : T,

and the introduction rules for the paths are

` pi :
∏

x : Ai(B1, . . . , B`).Fi Gi .

Given Γ , x : T ` Y [x] : TYPE, the elimination rule is

Γ ` zi : Y [∗i] for i = 1, . . . , k Γ ` qi :
∏

x : Ai .F
′
i

Y
pi x G′i for i = 1, . . . , n

Γ ` T -elim(z1, . . . , zk, q1, . . . , qn) :
∏

x : T.Y [x]

where F ′i = Fi[x , z1, . . . , zk, q1, . . . , qi−1] and G′i = Gi[x , z1, . . . , zk, q1, . . . , qi−1]. Finally,
the computation rules are

T -elim(z1, . . . , zk, q1, . . . , qn)∗i = zi

and for t : Ai

apd(T -elim(z1, . . . , zk, q1, . . . , qn), pi t) = qi t. ù

Note that the computation rules preserve types.

Lemma 4.4.3. The computations rules preserve types.

PROOF. Since T -elim(z1, . . . , zk, q1, . . . , qn) :
∏

x : T.Y [x], we have that both zi
and T -elim(z1, . . . , zk, q1, . . . , qn)∗i are of type Y [∗i]. This means that the first com-
putation rule preserves types. Furthermore, using the first computation rule we see
that apd(T -elim(z1, . . . , zk, q1, . . . , qn), pi t) is of type F ′i

Y
pi t G′i , and thus the last rule

preserves types as well. �

4.4.1. Interpretation. To give an interpretation of higher inductive types from
points, we use pushouts. This means that we want to prove the following theorem

Theorem 4.4.4. If C is a Martin-Löf category in which we can interpret all intervals,
then we can interpret higher inductive types from points in C .

PROOF. Basically, our approach is as follows. We make approximations of the type
T step by step. In every step we add a path, and eventually we have everything. The
interpretation is thus given as a sequence of pushouts, one for each path.

Let C be a Martin-Löf category with an interpretation of every In as discussed in
Section 4.2.2, and we denote this interpretation by In. The first approximation will be
T0 defined as
∐k

i=1 I0, and note that for every i we have a map ∗i :>→ T0 which is the
ith inclusion. Also, a map T0→ Y corresponds with maps zi :>→ Y for i = 1, . . . , k.

To continue, we make Ti for i = 1, . . . , n such that in Ti we have interpretations
of ∗1, . . . ,∗k, p1, . . . , pi−1 and Ti satisfies the right elimination rule and computation
rules. These rules for Ti is the elimination rule and the computation rules of the higher
inductive type generated from ∗1, . . . ,∗k, p1, . . . , pi−1. We use induction, so assume that
we have constructed Ti for i = 1, . . . , n, in which we can interpret ∗1, . . . ,∗k, p1, . . . , pi−1.
Recall that pi has type Fi[x ,∗1, . . . ,∗k, p1, . . . , pi−1] Gi[x ,∗1, . . . ,∗k, p1 . . . , pi−1], and
that Fi and Gi are terms of type I di → T using x , ∗1, . . . ,∗k, p1, . . . , pi−1 as free variables.

32 4. HIGHER INDUCTIVE TYPES

Since we have interpretations of ∗1, . . . ,∗k, p1, . . . , pi−1, we can interpret Fi and Gi as
maps fi , gi :
∏

x : Ai .I
di → Ti . Now we construct Ti+1 as the following pushout

∏

x : Ai .I
di
∐

I di
fi
∐

gi //

��

Ti

��
∏

x : Ai I
di+1

pi

// Ti+1

Note that for j = 1, . . . , i − 1 we have a map pi−1 :
∏

x : Ai .I
d j+1 → Ti → Ti+1, and

for j = 1, . . . , k we have a map ∗ j : > → Ti → Ti+1, and thus Ti+1 has the desired
constructors. To make a map from Ti+1 to some object Y , we need a map Ti → Y and
a map qi :
∏

x : Ai I
di+1→ Y such that the following diagram commutes

∏

x : Ai .I
di
∐

I di
fi
∐

gi //

��

Ti

��
∏

x : Ai I
di+1

pi

// Y

To make a map Ti → Y , we can use the elimination rule of Ti . In addition, we need
to give I di+1 → Y , and the requirement that the diagram commutes gives the right
requirement on the endpoints. Hence, we get a map Ti+1 → Y which interpret the
elimination rule. The computation rules can easily be checked by diagram chasing,
and we show the right diagram for ∗ j

>

∗ j

��

T0

��

z j

��

. . .

��
∏

x : Ai .I
di
∐

I di
fi
∐

gi //

��

Ti

��

��

∏

x : Ai .I
di+1

pi

//

**

Ti+1

Y

Using the universal property of the coproduct and pushout one can show that all trian-
gles commutes, and this gives the right computation rule for ∗ j . For the paths the same
argument can be given.

All in all, the type Tn satisfies the right rules, and therefore it is an interpretation
of the higher inductive type T . �

4.4. HIGHER INDUCTIVE TYPES FROM POINTS 33

4.4.2. Examples. There are several higher inductive types which can be defined
this way. We discuss the circle and the torus, but one can consider other CW-complexes
with a finite presentation as well.

Example 4.4.5 (Circle). Let us start with the circle.

Inductive S1 :=
| base : S1

| loop : base base

We can then deduce the following elimination rule

Γ , x : S1 ` Y [x] : TYPE Γ ` z : Y [base] Γ ` q : z z

Γ ` S1-elim(z, q) :
∏

x : T.Y [x]
and the computation rules say that

S1-elim(z, q)(base) = z,

apd(S1-elim(z, q), loop) = q.
Note that these rules are the same as those in [Uni13].

Example 4.4.6 (Torus). Another example is the torus T.
Inductive T :=

| base : T
| p : base base
| q : base base
| s : Irec(base, base, p ◦ q) Irec(base, base,q ◦ p)

Again we can deduce the elimination rule given that we have Γ , x : T ` Y [x] : TYPE

Γ ` z : Y [base] Γ ` p′ : z z Γ ` q′ : z z Γ ` s′ : p′ ◦ q′ Y
s q′ ◦ p′

Γ ` T-elim(z, p′, q′, s′) :
∏

x : T.Y [x]
and the computation rules are

T-elim(z, p′, q′, s′)(base) = z,

apd(T-elim(z, p′, q′, s′)(base), p) = p′,
apd(T-elim(z, p′, q′, s′)(base), q) = q′,
apd(T-elim(z, p′, q′, s′)(base), s) = s′.

Again these rules are the same as those in [Uni13].

Interpreting S1 gives the circle. It glues the endpoints of a line I1 to some point
which indeed gives the circle. Also, the type T gives the torus. Note that s gives a path
from p ◦ q ◦ p−1 ◦ q−1 which is what is needed for the torus.

Example 4.4.7 (Cylinder). Lastly, let us briefly show a higher inductive type which
shows the advantage of working with intervals

Inductive Cyl :=
| base1 : Cyl
| base2 : Cyl
| p : base1 base1

| q : base2 base2

| s : Irec(base1, base1, p) Irec(base2, base2, q)

We cannot add an equality between p and q, because they have different types, but this
way we can make this a cylinder.

34 4. HIGHER INDUCTIVE TYPES

4.5. Nonrecursive Higher Inductive Types

Recall the type

Inductive N/2N :=
| 0 : N/2N
| S : N/2N→ N/2N
| p : 0 S (S 0)

This type is not allowed in the syntax of Definition 4.4.2, and we cannot interpret it
in the same way as those types. The problem is that this would only add an equality
between 0 and S (S 0), but not between S(0) and S (S (S 0)). To solve this problem we
need to add more equalities in the interpretation. Also, after adding all the paths, there
still should be a function S : N/2N→ N/2N. Thus, our goal is that S gets interpreted
as a function in the construction, and that there are enough paths.

Recall that a polynomial functor is built from constant functors, the identity, prod-
ucts and coproducts. The constructors of inductive types are given using polynomial
functors. By Theorem 3.2.17 all polynomial functors have an initial algebra which is
the interpretation of the inductive type. We only need to extend this by giving the path
constructors. Using the notation of Definition 2.2.2 we define

Definition 4.5.1 (Nonrecursive Higher Inductive Type). A nonrecursive higher inductive
type is given by the following syntax

Inductive T (B1 : TYPE) . . . (B` : TYPE) :=
| c1 : H1(T)→ T
. . .
| ck : Hk(T)→ T
| p1 :
∏

x : A1.F1[x , c1, . . . , ck] G1[x , c1, . . . , ck]
. . .
| pn :
∏

x : An.Fn[x , c1, . . . , ck, p1, . . . , pn−1] Gn[x , c1, . . . , ck, p1, . . . , pn−1]

Again we write Fi = Fi[x , c1, . . . , ck, p1, . . . , pi−1] and Gi = Gi[x , c1, . . . , ck, p1, . . . , pi−1],
and again we require that Fi and Gi are terms in (I di → T)(x , c1, . . . , ck, p1, . . . , pi−1)
with variables x : Ai , c j : H j(T)→ T and

p j :
∏

x : A j .F j[x , c1, . . . , ck, p1, . . . , p j−1] G j[x , c1, . . . , ck, p1 . . . , p j−1]

using the notation of Definition 4.4.1. Furthermore, we require that Ai is any type
depending on B1, . . . B` in Martin-Löf type theory (higher inductive types are allowed),
and that every Hi is polynomial.

We denote T (B1, . . . , B`) by T . The introduction rules for the points are

Γ ` x : Hi(T)
Γ ` ci x : T

and the introduction rules for the paths are

` pi :
∏

x : Ai(B1, . . . , B`).Fi Gi .

Also, the elimination rule is similar to the one in Definition 4.4.2, and we need to have
a family of types Y satisfying Γ , x : T ` Y [x] : TYPE.

For i = 1, . . . , k

Γ ` zi :
∏

x : Hi(T).Hi(Y)[x]→ Y [ci(x)]
For i = 1, . . . , n

Γ ` qi :
∏

x : Ai .F
′
i

Y
pi x G′i

Γ ` T -elim(z1, . . . , zk, q1, . . . , qn) :
∏

x : T.Y [x]

4.5. NONRECURSIVE HIGHER INDUCTIVE TYPES 35

where F ′i = Fi[x , z1, . . . , zk, q1, . . . , qi−1] and G′i = Gi[x , z1, . . . , zk, q1, . . . , qi−1]. Lastly,
we have similar computation rules for t : Hi(T)

T -elim(z1, . . . , zk, q1, . . . , qn) (ci t) = (zi t) (Hi(T -elim(z1, . . . , zk, q1, . . . , qn)) t)

and for all t : Ai

apd(T -elim(z1, . . . , zk, q1, . . . , qn), pi t) = qi t. ù

Again we would like that the computation rules preserve types.

Lemma 4.5.2. The computation rules preserve types.

PROOF. We start with the rule

T -elim(z1, . . . , zk, q1, . . . , qn) (ci x) = zi (Hi(T -elim(z1, . . . , zk, q1, . . . , qn))(x))

Note that T -elim(z1, . . . , zk, q1, . . . , qn) (ci t) has type Y (ci t). On the other hand, the
term T -elim(z1, . . . , zk, q1, . . . , qn) has type

∏

x : T.Y (x). Because Hi is a polynomial
functor, we have a function

Hi(T -elim(z1, . . . , zk, q1, . . . , qn)) :
∏

x : Hi(T).Hi(Y)(x).

So, for all t : Hi(T) the term Hi(T -elim(z1, . . . , zk, q1, . . . , qn) t has type Hi(Y (t)). Since
zi has type
∏

x : Hi(T).Hi(Y)(x) → Y (ci(x)), we see that zi t has type Hi(Y)(x) →
Y (ci(x)). Also, note that T -elim(z1, . . . , zk, q1, . . . , qn)(ci(x)) is of type Y (ci(x)), and
thus this rule is typed correctly. All in all, we can conclude that the term

(zi t) (Hi(T -elim(z1, . . . , zk, q1, . . . , qn)) t)

has type Y (ci x), and thus this computation rule preserves types.
For t : Ai we check the rule

apd(T -elim(z1, . . . , zk, q1, . . . , qn), pi t) = qi t.

Since qi has type
∏

x : Ai .F
′
i

Y
pi x G′i , we see that qi t has type F ′i

Y
pi t G′i . On the

other hand, since pi has type
∏

x : Ai(B1, . . . , B`).Fi Gi , the term pi t must have type
Fi Gi . By the computation rules we have that T -elim(z1, . . . , zk, q1, . . . , qn) Fi = F ′i
and T -elim(z1, . . . , zk, q1, . . . , qn)Gi = G′i . Using this and Proposition 2.3.8 we conclude
that apd(T -elim(z1, . . . , zk, q1, . . . , qn), pi t) has type F ′i

Y
pi x G′i . Hence, the types of

apd(T -elim(z1, . . . , zk, q1, . . . , qn), pi t) and qi t coincide, and thus this rules preserve
types as well. �

4.5.1. Interpretation. Our goal is to give an interpretation of the type

Inductive T (B1 : TYPE) . . . (B` : TYPE) :=
| c1 : H1(T)→ T
. . .
| ck : Hk(T)→ T
| p1 :
∏

x : A1.F1[x ,∗1, . . . ,∗m] G1[x ,∗1, . . . ,∗m]
. . .
| pn :
∏

x : An.Fn[x ,∗1, . . . ,∗m, p1, . . . , pn−1] Gn[x ,∗1, . . . ,∗m, p1, . . . , pn−1]

More specifically, we want to prove the following theorem

Theorem 4.5.3. If C is a Martin-Löf category in which we can interpret all intervals,
then we can interpret higher inductive types from points in C . We can give interpretations
of the introduction rule, computation rules and the nondependent elimination rule.

36 4. HIGHER INDUCTIVE TYPES

This theorem is more difficult than Theorem 4.4.4, because we also need to add
equalities ap(ci , p j). This can be solved by gluing more equalities to the inductive type.

More specifically, we start by interpreting just the constructors c1, . . . , ck, and that
can be done by interpreting inductive types. Now we can glue the paths p1, . . . , pn to
the type, and this gives the first approximation T0. To construct T1, we add for every
path p in T0 a new path ap(ci , p) which is done using a pushout. Several equalities
should hold, namely ap(ci , refl) = refl, and using a coequalizer we get T1.

Now we construct T2 from T1, and this is done in the same way. However, there is
one issue. If we have a path p in T0, then we get ap(ci , p) twice in T2. We already have
this path, and we add ap(ci , p) for every path p in T1. Since p is also a path in T0, we
thus get ap(ci , p) again, and these two need to be identified. Hence, we can construct
T2 from T1 in the same way, but we need to take one extra coequalizer.

All in all, the construction is basically as follows. We start by giving an inductive
type, and to that type we add the paths given in the definition. Then we approximate
T step by step, and in every step we add new paths ap(ci , p) where p is any path in the
previous approximation. However, there might be duplicates and we need the ensure
that ap(ci , refl) = refl, and thus we need to take some coequalizers in the construction.
This gives T0→ T1→ . . ., and we define T as the colimit of all the Ti .

PROOF. Let us start by defining the type T−1:

Inductive T−1 (B1 : TYPE) . . . (B` : TYPE) :=
| c1 : H1(T)→ T−1

. . .
| ck : Hk(T)→ T−1

This type can be interpreted in C as an object T−1.
Next we define T0 from T−1, and we add all the paths p1, . . . , pn. This is done in

the same way as in the previous section. So, we give a chain T 0
0 → T 1

0 → . . .→ T n
0 of

arrows where T 0
0 = T−1 and T i+1

0 is

∏

x : Ai .I
di
∐

I di
fi
∐

gi //

��

T i
0

��
∏

x : Ai .I
di+1

pi

// T i+1
0

Here fi and gi are the interpretations of Fi and Gi respectively.
Before we describe Ti let us explain why constructions will give the right con-

structors. For the inductive construction we will need that we always have a map
Hi(T j) → T j+1. If we have such a map and we define T = colim j∈N T j , then we
get a map Hi(T) → T . This is because a map Hi(T) → T is the same as a map
colim j∈N Hi(T j) → T , and thus it suffices to give maps Hi(T j) → T for all j. Hence,
if we have maps Hi(T j)→ T j+1, then we get a map ci : Hi(T)→ T , and this gives the
interpretation of the constructors.

Also, note that we have an interpretation of the paths pi . This is because an in-
terpretation of the path pi is a given as a map

∏

x : Ai .I
di+1 → T . We have a map

∏

x : Ai .I
di+1 → T0 with the right endpoints by construction. Since we have an inclu-

sion map T0→ T , we thus get a map
∏

x : Ai .I
di+1→ T by composition. Therefore, T

will have the right constructors.

4.5. NONRECURSIVE HIGHER INDUCTIVE TYPES 37

Now let us describe the construction in more detail. Suppose, we have a con-
structed T1, . . . , T j such that we have maps c i

j : H j(Tl) → Ti+1 for l = 1, . . . , i − 1,

we have inclusions ιi : Ti−1 → Ti , and we have a maps
∏k

j=1

∏

n : N
∏

p : In+1 →
H j(Tl−1).In+1 → Tl for l = 1, . . . , i − 1. We want to construct Ti+1 such that we have a
map Ti → Ti+1 and maps H j(Ti)→ Ti+1. This is done in several steps.

First we construct an object S such that we have maps H j(Ti)→ Si+1 for every j,
and we define S as the following pushout

∏k
j=1 H j(Ti−1)

∏k
j=1 H j(ιi)

//

∏k
j=1 c i

j

��

∏k
j=1 H j(Ti)

∏k
j=1 c i+1

j

��
∏k

j=1 Ti ιi+1

// S

This gives maps c i+1
j : H j(Ti)→ S such that for every inhabitant x : H j(Ti−1) we have

c i+1
j (ιi(x)) = ιi+1(c i

j(x)).
In the next step we define an object U such that we have an arrow S→ U , and to

this object U we add ap(c j , p) for paths p. We define U as the pushout

∑k
j=1

∑

n : N
∑

(p : In+1→ H j(S)).In
∐

In

ι0
∐

ι1

��

f
∐

g
// S

��
∑k

j=1

∑

n : N
∑

(p : In+1→ H j(S)).In+1 // U

where f : In→ S and g : In→ S are the maps c i+1
j ◦ p ◦ ι0 and c i+1

j ◦ p ◦ ι1 respectively

where n : N and p : In+1 → Hm+1(S) and j = 1, . . . , k. Note that the arrow
∑k

j=1

∑

n :
N
∑

p : (In+1 → H j(S)).In+1 → U gives for every j and p : In+1 → H j(S) a path
ap(c i+1

j , p) : In+1→ U . Hence, in U we added the desired paths.
Now we need to make two extra identifications. The first one says that ap(c i+1

j , refl) =
refl, and for this we use coequalizers. Note that for every n : N and every j there is a
path ap(c j , refl) by construction, and we define V to be the following coequalizer.

∏k
j=1 In+1

ap(c j ,refl)
//

refl
// U // V

We always have a map refl : In+1 → U , and thus this coequalizer makes sense. It
identifies ap(c j , refl) with refl which is what we want.

The second identification says that ap(c i+1
j , p) and ap(c i

j , p) are the same for all
paths p. Note that we have maps Ti−1 → Ti → S, and this gives maps h : H j(Ti−1)→
H j(Ti) → H j(S) for all j. Define the map f :

∏k
j=1

∏

n : N
∏

p : In+1 → H j(Ti−1).U
as λ jλnλp. ap(c i+1

j , h ◦ p). Recall that the induction hypothesis says that we have a

map
∏k

j=1

∏

n : N
∏

p : In+1 → H j(Tl−1).In+1 → Tl for l = 1, . . . , i − 1. Define g :
∏k

j=1

∏

n : N
∏

p : In+1 → H j(Ti+1).U to be the map λ jλnλp.ι ◦ ap(c i
j , p) where ι is

38 4. HIGHER INDUCTIVE TYPES

the map Ti → S→ U . Again we take a coequalizer

∏k
j=1 In+1

f
//

g
// V // Ti+1

Note that T1 can be defined from T0 in the same way, but we do not need to identify
ap(c1

j , p) and ap(c0
j , p), and thus we get a chain of arrows T0→ T1→ T2→ We say

that the interpretation of T is colimn∈N Tn. Only the elimination and computation rules
are left, because we already explain that it has the right constructors.

It is not difficult to verify the elimination rule. Let Y [x] be a family of types on T .
We can make a map T0 → Y [x] by using induction. If we have a map

∏

x : Ti .Y [x],
then we can extend it to a map

∏

x : Ti+1.Y [x]. This is because every family of types
Y [x] with maps zi : H(Y)(x)→ Y (ci x) has all ap(zi , p) for p : In → Y (x). Also, these
satisfy ap(zi , refl) = refl, and the maps λ jλnλp. ap(c i+1

j , h◦ p) and λ jλnλp.ι ◦ap(c i
j , p)

are sent to λ jλnλp. ap(z j , q) where q is the image of p. Hence, we get a map
∏

x :
T.Y [x] by using the universal property of the colimit which is the interpretation of the
elimination rule.

Lastly, the computation rules hold, because all involved diagrams commute. �

Note that if we do not require that ap(c j , refl) = refl, then we need to specify more
to give a map T → Y . This is because the images of all ap(c j , refl) needs to be given
as well. The same argument can be given for the requirement that ap(c i+1

j , p) and
ap(c i

j , p).

4.5.2. Examples. Now we can finally discuss the example we defined before.

Example 4.5.4 (Integers Modulo 2). To define the integers modulo 2, we start with
the natural numbers, and we add a path p : 0 S (S 0). This can be done using a non
higher inductive type, and thus we define

Inductive N/2N :=
| 0 : N/2N
| S : N/2N→ N/2N
| p : 0 S (S 0)

We can easily form the elimination rule assuming Γ , x : N/2N ` Y [x] : TYPE

Γ ` z : Y [0] Γ , n : N/2N ` s : Y [n]→ Y [S n] Γ ` q : z Y
p s (s z)

Γ ` N/2N-elim(z, s, q) :
∏

x:N/2N Y [x]

and the computation rules are

N/2N-elim(z, s, q)0= z,

N/2N-elim(z, s, q) (S n) = s (N/2N-elim(z, s, q)n),

apd(N/2N-elim(z, s, q), p) = q.

Also, we have an inhabitant of S 0 S3 0, namely apd(S, p). In a similar way we can
define the integers modulo n. We only have to change the last rule into p : 0 Sn 0.

It is insightful to work out the construction for this example. We start by making
T0 which is N with an equality between 0 and 2. To make T1 we add paths ap(S, p)
for p : T I1

0 , and we say that ap(S, refl) = refl. The only nontrivial path is p : 0 2, so
now we get a path ap(S, p) : 1 3. For T2 we do the same, and now we get a path
ap(S, ap(S, p)) : 2 4, but now again we get another copy of ap(S, p). The coequalizer

4.6. RECURSIVE HIGHER INDUCTIVE TYPES 39

says that the copy of ap(S, p)we just made is the same as the first one. This construction
can be continued to get Ti for every i. Taking the colimit of all Ti we get a type T such
that n n+ 2 always has an inhabitant.

4.6. Recursive Higher Inductive Types

An important example of a higher inductive type is the truncation of a type. If
we have a type A, then for the truncation ||A|| we need a map A → ||A|| and a map
∏

x : ||A||
∏

y : ||A||.x y , so everything in the truncation must be equal. This is
defined in the following way

Inductive ||A|| (A : TYPE) :=
| ι : A→ ||A||
| p :
∏

x : ||A||
∏

y : ||A||.x y

Up to now we are unable to interpret this one, because the path p has ||A|| in the
quantifiers. So, we can say that this is a recursive higher inductive type, because the
quantifiers uses the original type.

For these types we do not have a concrete interpretation, but instead we will give
a suggestion of a possible definition.

Definition 4.6.1 (Recursive Higher Inductive Type). A recursive higher inductive type
is defined according to the following syntax

Inductive T (B1 : TYPE) . . . (B` : TYPE):=
| c1 : H1(T)→ T
. . .
| ck : Hk(T)→ T
| p1 :
∏

x : A1(T).F1[x , c1, . . . , ck] G1[x , c1, . . . , ck]
. . .
| pn :
∏

x : An(T).Fn[x , c1, . . . , ck, p1, . . . , pn−1] Gn[x , c1, . . . , ck, p1, . . . , pn−1]

Again we write Fi = Fi[x , c1, . . . , ck, p1, . . . , pi−1] and Gi = Gi[x , c1, . . . , ck, p1, . . . , pi−1],
and again we require that Fi and Gi are terms in (I di → T)(x , c1, . . . , ck, p1, . . . , pi−1)
with variables x : Ai(T), c j : H j(T)→ T and

p j :
∏

x : A j(T).F j[x , c1, . . . , ck, p1, . . . , p j−1] G j[x , c1, . . . , ck, p1 . . . , p j−1].

Furthermore, we require that Ai(T) is any type depending on B1, . . . B`, T , which is
polynomial in T , in Martin-Löf type theory with higher inductive types, and that every
Hi is polynomial. Also, we write T = T (B1, . . . , B`), and using that notation we give
the introduction rules for the points

Γ ` x : Hi(T)
Γ ` ci x : T

and the introduction rules for the paths

Γ ` pi :
∏

x : Ai(T).Fi Gi

However, in contrast to the previous versions, we will only give a nondependent elim-
ination rule, because we were unable to formulate a dependent one. We assume that
we have a type Y such that Γ ` Y : TYPE, and then the elimination rule is

40 4. HIGHER INDUCTIVE TYPES

Γ ` zi : Hi(Y)→ Y for i = 1, . . . , k Γ ` qi :
∏

x : Ai(Y).F ′i G′i for i = 1, . . . , n

Γ ` T -elim(z1, . . . , zk, q1, . . . , qn) : T → Y
where F ′i = Fi[x , z1, . . . , zk, q1, . . . , qi−1] and G′i = Gi[x , z1, . . . , zk, q1, . . . , qi−1]. Lastly,
we have similar computation rules for t : Hi(T)

T -elim(z1, . . . , zk, q1, . . . , qn) (ci t) = zi (Hi(T -elim(z1, . . . , zk, q1, . . . , qn)) t)

and for all t : Ai(T)

apd(T -elim(z1, . . . , zk, q1, . . . , qn), pi x) = qi (Ai(T -elim(z1, . . . , zk, q1, . . . , qn)) t). ù

Note that Ai gives a map Ai(T -elim(z1, . . . , zk, q1, . . . , qn)) : Ai(T)→ Ai(Y). In the
same way as in Definition 4.5.1 we can check that the computation rules preserve types.
Now let us discuss some examples of recursive higher inductive types.

Example 4.6.2 (Truncation). Recall that the truncation which is defined as follows

Inductive ||A|| (A : TYPE) :=
| ι : A→ ||A||
| p :
∏

x : ||A||
∏

y : ||A||.x y

From Definition 4.6.1 we can already see the introduction rules, namely we have ι x :
||A|| for x : A, and for x : ||A|| and y : ||A|| we have p x y : x y . The elimination rule
is as follows

Γ ` Y : TYPE Γ ` i : A→ Y Γ ` q :
∏

x : Y
∏

y : Y.x y
Γ ` ||A||-elim(i, q) : ||A|| → Y

and we have two computation rules which say that for t : A

||A||-elim(i, q) (ι x) = i x

and for all x : ||A|| and y : ||A|| we have

apd(||A||-elim(i, q), p x y) = q (||A||-elim(i, q) x)(||A||-elim(i, q) y).

Note that the axiom Γ ` q :
∏

x : Y
∏

y : Y.x y says that Y is a mere proposi-
tion. So, in words the elimination rule says that ||A|| is the smallest mere proposition
containing A.

We can also define higher truncations.

Example 4.6.3 (Higher Truncation). Let n : N be any fixed natural number. The defi-
nition of the higher truncation is similar to the definition of the truncation.

Inductive ||A||n (A : TYPE) :=
| ι : A→ ||A||
| p :
∏

x : ||A||In∏

y : ||A||In
.x y

Again the introduction rules can be seen easily, namely we have ι x : ||A|| for x : A, and
for x : ||A||I

n
and y : ||A||I

n
we have p x y : x y . The elimination rule is as follows

Γ ` Y : TYPE Γ ` i : A→ Y Γ ` q :
∏

x : Y In∏

y : Y In
.x y

Γ ` ||A||-elim(i, q) : ||A|| → Y
and we have two computation rules which say that for x : A

||A||-elim(i, q) (ι x) = i x

and for all x : ||A||I
n

and y : ||A||I
n

we have

apd(||A||-elim(i, q), p x y) = q (||A||-elim(i, q) x) (||A||-elim(i, q) y).

4.6. RECURSIVE HIGHER INDUCTIVE TYPES 41

There are several issues when interpreting recursive higher inductive types, and to
explain them we look at the truncation of 1+1+1. Note that 1+1+1 has three points
∗1,∗2,∗3. In the truncation there should be new paths pi j : ∗i ∗ j for i, j ∈ {1,2, 3}.
Now if we interpret this in topological spaces, then new points are added, because a
path contains uncountably many points. So, on p12 we can find a point x and on p13
we can find a point y such neither x nor y is an endpoint. Because in the truncation
there should be a path between every two points, there should be a path px y between
x and y . However, we have a choice. We have x ∗1 and y ∗1, but we also have
x ∗2 and y ∗3 giving x y , because we have a path ∗2 ∗3. For the truncation
we need to choose one of these paths, and this is the first difficulty. This can be solved
by again adding paths between every x and y , and this can be continued. However,
the main problem we had was when to stop adding. At some point the construction
should be completed, and this has to be given in a general fashion.

CHAPTER 5

Applications

In this chapter we discuss some examples of higher inductive types. These ex-
amples, including modular arithmetic, finite sets and integers, are often difficult or
impossible to define using normal inductive types. With inductive definitions free data
types are created in which no equations are satisfied. Instead of defining them directly,
one gives a coding of these in some other data type like lists. Using higher inductive
types it is possible to define them and reason about them in a direct way.

5.1. Modular Arithmetic

The first example we discuss is modular arithmetic. We define the typeN/nNwhich
are the integers modulo n.

Inductive N/nN :=
| 0 : N/nN
| S : N/nN→ N/nN
| p : 0 Sn 0

Note that this is a nonrecursive type, because the path 0 Sn 0 does not use the type
N/nN. This type has the following elimination rule for Γ , x : N/nN ` Y [x] : TYPE

Γ ` z : Y [0] Γ , x : N/nN ` s : Y [x]→ Y [S x] Γ ` q : z Y
p sn z

Γ ` N/nN-elim(z, s, q) :
∏

x : N/nN.Y [x]

and we have the following computation rules

N/nN-elim(z, s, q)0= z,

N/nN-elim(z, s, q) (S n) = s (N/nN-elim(z, s, q)n),

apd(N/nN-elim(z, s, q), p) = q.

For this type we can define addition, which uses the following proposition.

Proposition 5.1.1. For every m : N/nN we have an inhabitant qm of m Sn m.

PROOF. Define Y [x] to be the type x Sn x . Now we need to give an inhabitant
z of Y [0] = 0 Sn 0 for which we can take p. Next, we have to give an inhabitant of
Y [x]→ Y [S x], so a map s : x Sn x → S x Sn (S x). We define s = λq. apd(S, q) :
x Sn x → S x Sn (S x).

Finally, we need to give an inhabitant of p Y
p sn p, so we need to give a path

p∗(p) sn p according to Definition 2.3.7. We will give a map
∏

x : N/nN
∏

y :
N/nN
∏

q : x y.p∗(q) sn q instead, and for that we use path induction. Taking q to
be reflx , we see that both p∗(q) and sn q are refl, and thus reflexivity is a path between
them. Hence, we can specialize this to the case p∗(p) sn p, and thus we get the
desired path. We then apply the elimination rule to a map

∏

m : N/nN.m Sn m �

43

44 5. APPLICATIONS

For addition we basically define for every m : N/nN a function fm, which repre-
sents λx .x + m, and fm can be defined using the induction principle for N/2N. The
environment Γ consists just of the declaration m : N/nN. To apply the elimination rule,
we first need to give a type Y [x] for every x : N/2N, and for Y [x]we take N/nN. Next,
we need to give an inhabitant z of N/nN, which needs to be m. Also, we need to give a
function s : N/nN→ N/nN which will be S. Lastly, we need to give a path between m
and Sn(m), which we can take to be qm by Proposition 5.1.1. This gives us the desired
function fm = N/nN-elim(Sm(0), S, qm) : N/nN→ N/nN. The computation rules give

fm 0= m,

fm (S x) = S (fm x),
apd(fm, p) = qm.

Hence, we can define + : N/nN→ N/nN→ N/nN by sending m to fm.
Now let us show that N/2N has two inhabitants, namely 0 and 1.

Proposition 5.1.2. We have N/2N'>+>.

PROOF. We denote the inhabitants of>+> by ∗1 and ∗2. First, we construct a map
f :>+>→ N/2N by sending ∗1 to 0 and ∗2 to S 0.

Next, we define a map g : N/2N→>+> as follows. We send 0 to ∗1, and for the
map h : >+> → >+> we take the permutation which sends ∗1 to ∗2 and ∗2 to ∗1.
Lastly, we need a path q : ∗1 h (h∗1), and since h (h∗1) = ∗1 by definition, we can
take q = refl. Now N/nN-elimination gives a function g : N/2N→>+>.

It is not difficult to check that these maps are mutual inverses, and thus we have
N/2N∼=>+>. �

5.2. Truncations

Suppose, we have a type A, and we would like to make a type B such that we have
a maps i : A→ B and p :

∏

x : B
∏

y : B.x y . To define such a type B, we have two
candidates.

Inductive ||A|| (A : TYPE) :=
| ι : A→ ||A||
| p :
∏

x : ||A||
∏

y : ||A||.x y

Inductive |A| (A : TYPE) :=
| ι : A→ |A|
| p :
∏

x : A
∏

y : A.ι x ι y

It is not difficult to check that ||A|| satisfies the requirements by the introduction
rules. However, one might expect tht |A| also satisfies the requirements, and the ques-
tion arises whether ||A|| and |A| are isomorphic. This is not the case if the univalence
axiom holds. From [LS13] we have the following proposition

Proposition 5.2.1. From the univalence axiom follows that the fundamental group of the
circle is Z.

We will not need the precise definition of the fundamental group here, but we do
need some properties. These are that isomorphic types have isomorphic fundamental
groups and that contractible types have a trivial fundamental group, namely 0. Also,
we need that Z and 0 are not isomorphic. Since the fundamental group of contractible
types is trivial, we can conclude from univalence that the circle is not contractible.

5.3. DATA TYPES IN FUNCTIONAL PROGRAMMING 45

From the definition one can easily see that ||A|| is contractible for every A. Our goal is
to show that |A| is not always contractible which allows us to conclude that |A| and ||A||
do not have to be isomorphic. For that we show that S1 and |>| are isomorphic, where
> is the type with just one point.

Theorem 5.2.2. The types |>| and S1 are isomorphic.

PROOF. First, we make a function f : |>| → S1. For this we need to give a map
i : > → S1 and a map q :

∏

x :>
∏

y :>.i x i y . We define i : > → S1 by sending
the point ∗ to base. Also, q can be defined using induction, and if we take x = ∗ and
y = ∗, then the path is loop. Now |>|-recursion gives the map f . Next, we make a map
S1 → |>|. The point base is sent to ι ∗, and loop is sent to (p ∗)∗. Using S1-recursion
we get a map g : S1→ |>|.

Lastly, we need to verify that these maps are mutual inverses. Note that

g (f (ι ∗)) = g (base) = ι(∗),

ap(g, ap(f , (p ∗)∗)) = ap(g, loop) = (p ∗)∗,
and this shows the first requirement. For the second requirement, we note that

f (g base) = f (ι ∗) = base,

ap(f , ap(g, loop)) = ap(f , ((p ∗)∗)) = loop,

and thus f ◦ g is the identity as well. Hence, the types are indeed isomorphic. �

We can thus conclude that |>| is not contractible if univalence holds. Hence, we
get that |A| and ||A|| are not isomorphic.

For higher truncations we can do something similar.

Inductive ||A||n (A : TYPE) :=
| ι : A→ ||A||n
| p :
∏

f : I n→ ||A||n
∏

g : I n→ ||A||n.x y

Inductive |A|n (A : TYPE) :=
| ι : A→ |A|n
| p :
∏

f : I n→ A
∏

g : I n→ A.ι ◦ f ι ◦ g

We can prove that |∗|= Sn, and the nth homotopy group of Sn is nontrivial [LB13].
Hence, since the nth truncation has a trivial nth homotopy group, these types must be
different.

5.3. Data Types in Functional Programming

In this section we will discuss some data types in functional programming which
we can define using higher inductive types. These are the integers and finite sets, and
they cannot easily be defined using just inductive types. Furthermore, we prove some
properties of finite sets.

Let us start with a simple example of a data type in functional programming we can
make using higher inductive types. After that example we look at finite sets in detail.
This example is the integers, and the main idea is that instead of just saying that we
have the operation S : Z→ Z, we say that S has an inverse P : Z→ Z. Hence, we need
to require two equalities, namely

∏

x : Z.P (S x) x and
∏

x : Z.S (P x) x . In a
data type this is written as

46 5. APPLICATIONS

Inductive Z :=
| 0 : Z
| S : Z→ Z
| P : Z→ Z
| q1 :
∏

x : Z.P (S x) x
| q2 :
∏

x : Z.S (P x) x

In this case we can prove that

`
∏

x : Z
∏

y : Z.S x S y → x y

by using that S has an inverse. More properties can be proved, but we will not discuss
these.

Next we discuss finite sets, and we will prove some properties of them. To do that,
we need some other data types first. First, we define a data type BOOL as follows

Inductive BOOL :=
| True : BOOL

| False : BOOL

Using the elimination principle we can define operations ∨ and ∧. Furthermore, we
assume that True False'⊥, meaning that True and False are not equal. Some other
terminology that we will need are the notions of mere propositions and sets.

Definition 5.3.1 (Mere Proposition). A type A is called a mere proposition iff the type
∏

x : A
∏

y : A.x y is inhabited. ù

It is easy to prove that two mere propositions are isomorphic if there are functions
between them.

Lemma 5.3.2 (Lemma 3.3.3 in [Uni13]). Let P and Q be mere propositions. Then P
and Q are isomorphic iff we have f : P →Q and g : Q→ P.

Furthermore, mere propositions are closed under products.

Lemma 5.3.3 (Lemma 3.6.1 in [Uni13]). If P and Q be mere propositions, then P ×Q
is a mere proposition.

From Lemma 5.3.3 we can conclude the following lemma.

Lemma 5.3.4. If A : TYPE and B : TYPE, then ||A× B|| ' ||A|| × ||B||.

We will use Lemma 5.3.4 frequently, so we will not give explicit references to it.
Some types have unique identity proofs, and such types are called sets. This means that
every x y is a mere proposition, or more formally.

Definition 5.3.5 (Set). A type A is called a set if for all x , y : A the type x y is a
mere proposition. ù

An example of a set is BOOL. This can be proven using Hedberg’s Theorem [Hed98,
Uni13].

Proposition 5.3.6. The type BOOL is a set.

Now we will define a data type finite sets. Given a type A, we define the type of
finite subsets of A as the free ∨-semilattice over A.

Definition 5.3.7 (Finite Sets). We define the inductive type of finite sets S(A) on A as
follows.

5.3. DATA TYPES IN FUNCTIONAL PROGRAMMING 47

Inductive S(A) (A : TYPE) :=
| 1 : S(A)
| L : A→ S(A)
| ∪ : S(A)× S(A)→ S(A)
| a :
∏

x : S(A)
∏

y : S(A)
∏

z : S(A).x ∪ (y ∪ z) (x ∪ y)∪ z
| n1 :
∏

x : S(A).x ∪ 1 x
| n2 :
∏

x : S(A).1∪ x x
| c :
∏

x : S(A)
∏

y : S(A).x ∪ y y ∪ x
| i :
∏

x : A.L(x)∪ L(x) L(x)

So, we have A : TYPE ` S(A) : TYPE. ù

The constructor 1 gives the empty set, and the constructor L sends x to the single-
ton set {x}. We use the notation {x} for L x . Also, we need to have an operator ∪which
gives the union of two finite sets. This operator should be associative, commutative,
and we require that 1 is a neutral element for this operator. Furthermore, the union
of {x} and {x} has to be {x} so that multiplicity of the element does not matter. In
technical terms, S(A) is the free commutative idempotent monoid on A. If we remove
c and i, then we just have the free monoid, and that is the data type of lists. If we only
remove i, then this data type is the free commutative monoid, and this gives the data
type of bags.

Note that we define this data type in several ways. For example, now we can find
two inhabitants of 1∪ x x . The first one is given by n2, and the other one by n1 ◦ c.
There is no requirement about the equality of those, so they might be different. It
depends on what we want from the type: if we want this type to be a 1-type, then we
need some extra requirement saying that we have an inhabitant of p q for any two
paths p and q. This has one major disadvantage, namely that in such cases we can only
map it to other 1-types, and for more general types it is more difficult.

Let us start with a simple property.

Proposition 5.3.8. We can find a term of type
∏

x : S(A).||x ∪ x x ||.

PROOF. We use S(A)-elimination. If x = 1, then n1 gives a path 1∪ 1 x . In the
case that x = {a}, then i gives a path {a} ∪ {a} {a}.

For the union, if x = y∪z and if we have paths p : ||y∪ y y|| and q : ||z∪z z||.
Note that from a and c we get a path y ∪ z ∪ y ∪ z y ∪ y ∪ z ∪ z. Also, p and q give
paths y ∪ y ∪ z ∪ z y ∪ z ∪ z and y ∪ z ∪ z y ∪ z. Together all these paths give a
path y ∪ z ∪ y ∪ z y ∪ z.

Finally, we need to find images of a, n1, n2, c and i. For example, let us show
how we can find the image of i. Note that {a} ∪ {a} gets sent to a path p of type
||{a}∪{a}∪{a}∪{a} {a}∪{a}|| and that {a} gets sent to a path q of type ||{a}∪{a}
{a}||. The image of i must be a path of type p Y

i q. To find the inhabitant of that
type, we use that ||y ∪ y y|| is a mere proposition. Between any two inhabitants of
a mere proposition there is always a path, and thus we can find a path between i∗(p)
and q. For the other paths similar arguments can be given, and thus we get a term of
type
∏

x : S(A).||x ∪ x x ||. �

Note the truncation in this proposition. Normally, we have to give the images of
paths in higher inductive type explicitly, but now it is east due to the truncation. This
is because we can always find the paths in truncations.

48 5. APPLICATIONS

Next we show that some of the usual set theoretic axioms hold for S(A). For that
we must define a relation ∈: A× S(A)→ BOOL, which says whether some element is in
some finite set.

Let us start by defining the elements of a set. For that we need to know when two
elements of A are equal, so first we need the notion of decidable equality.

Definition 5.3.9 (Merely Decidable Equality). A type A has merely decidable equality
iff we have a map ==: A× A→ BOOL such that for all a, b : A the types ||a b|| and
a == b True are isomorphic. ù

Since we will only talk about merely decidable equality, we will just say decidable
equality from now on. This definition is equivalent to the definition of merely decidable
equality in [Uni13].

Definition 5.3.10 (Elements). Suppose, A is a type with decidable equality. Then we
define a function ∈: A× S(A)→ BOOL by induction on S(A) as follows.

∈ (a, 1) = False,

∈ (a, {b}) = a == b,
∈ (a, x ∪ y) = ∈ (a, x)∨∈ (a, y).

Note that by definition we have

∈ (a, x ∪ 1) = ∈ (a, x)∨∈ (a, 1),

and that we have a path ∈ (a, x) ∨ ∈ (a, 1) ∈ (a, 1). In the same way we can show
that we have a path ∈ (a, 1∪ x) ∈ (a, x). Also, by writing out the definitions we get
a path ∈ (a, x ∪ y) ∈ (a, y ∪ x). Lastly, we have by definition

∈ (a, {b} ∪ {b}) = ∈ (a, {b})∨∈ (a, {b}),

and we have a path ∈ (a, {b})∨∈ (a, {b}) ∈ (a, {b}). ù

We denote ∈ (a, x) by a ∈ x . Note that by definition we have a ∈ x ∪ y iff a ∈
x ∨ a ∈ y , and thus ∪ is indeed the union. Let us next define the comprehension. We
write {a : ϕ} to denote the set of elements in a satisfying some predicate ϕ.

Definition 5.3.11 (Comprehension). We define {} : S(A)× (A→ BOOL)→ S(A) using
induction to S(A).

{1 : ϕ}= 1,
{{a} : ϕ}= if ϕ a then {a} else 1,
{x ∪ y : ϕ}= {x : ϕ} ∪ {y : ϕ}.

The required paths can easily be verified to exist, thus we get the desired map. ù

For the comprehension we need that a ∈ {x : ϕ} iff a ∈ x ∧ϕ a. To prove this we
use induction on S(A).

Theorem 5.3.12. We have an inhabitant of a ∈ {x : ϕ} a ∈ x ∧ϕ a.

PROOF. Taking x to be 1, we need to find an inhabitant of a ∈ {1 : ϕ} a ∈ 1∧ϕ a.
Note that {1 : ϕ} = 1, and that we have a path a ∈ 1 False. Since we have a path
False∧b b, we need an inhabitant of False False which is refl.

Next, we take x to be {b}, which means that we need to find an inhabitant of
a ∈ {{b} : ϕ} a ∈ {b} ∧ ϕ a. Note that {{b} : ϕ} = if ϕ b then {b} else 1. There
are four cases now, because we can make case distinctions on a == b and ϕ b. If ϕ b
is false, then {{b} : ϕ} = 1, and if ϕ b happens to be true, then {{b} : ϕ} = {b}.

5.3. DATA TYPES IN FUNCTIONAL PROGRAMMING 49

Furthermore, a ∈ {b} is equivalent to a == b. So, if a == b is False or if ϕ b is False,
then one can check that both a ∈ {{b} : ϕ} and a ∈ {b} ∧ϕ a are False.

If both a == b is False and ϕ b are True, then we proceed in a different way. Note
that a == b True is isomorphic to a b, because A has decidable equality. Hence,
if we assume that a == b is True, then we have a path a b which gives a path
ϕ a ϕ b. From this one can give a path a ∈ {{b} : ϕ} a ∈ {b} ∧ ϕ a, and that
finishes this case.

The last point constructor is the union, so we take x to be y ∪ z. We assume that
we have inhabitants a ∈ {y : ϕ} a ∈ y ∧ϕ a and a ∈ {z : ϕ} a ∈ z ∧ϕ a. Writing
out the definition of {y ∪ z : ϕ}, we get an inhabitant of

a ∈ {y ∪ z : ϕ} a ∈ {y : ϕ} ∪ {z : ϕ}.

This can be simplified further to get an inhabitant of

a ∈ {y ∪ z : ϕ} a ∈ {y : ϕ} ∨ a ∈ {z : ϕ}.

Next we use the induction hypothesis, which says that we have inhabitants of a ∈ {y :
ϕ} a ∈ y ∧ϕ a and a ∈ {z : ϕ} a ∈ z ∧ϕ a, to obtain

a ∈ {y ∪ z : ϕ} (a ∈ y ∧ϕ a)∨ (a ∈ z ∧ϕ a).

Simplifying the right hand side gives an inhabitant of

a ∈ {y ∪ z : ϕ} (a ∈ y ∨ a ∈ z)∧ϕ a.

Noting that a ∈ y ∪ z a ∈ y ∨ a ∈ z, we get an inhabitant of

a ∈ {y ∪ z : ϕ} a ∈ y ∪ z ∧ϕ a.

This is what we wanted, so the property holds for the union.
Lastly, for the paths one needs to verify that both the left and right hand side gets

sent to the same element. We do this for the path a Note that (x ∪ y)∪ z gets sent to
a path p : b ∈ {(x ∪ y)∪ z : ϕ} b ∈ (x ∪ y)∪ z ∧ϕ b and x ∪ (y ∪ z) gets sent to a
path q : b ∈ {x ∪ (y ∪ z) : ϕ} b ∈ x ∪ (y ∪ z)∧ϕ b. Hence, the image of a must be a
path of type p a q. Using that BOOL is a set, it suffices to show that these get sent to
the same boolean, which can easily be verified. �

We can define more operations like the intersection

x ∩ y = {x : λa.a ∈ y},

and the difference
x − y = {x : λa.¬(a ∈ y)}.

From Theorem 5.3.12 we can now easily deduce the following proposition.

Proposition 5.3.13. There is an inhabitant of a ∈ x ∩ y a ∈ x ∧ a ∈ y.

With this setup we show that every finite set has a size by defining an operator
: S(A) → N. This is straightforward, except in the case ∪ for which we use the
principle of inclusion and exclusion.

Definition 5.3.14 (Size). Define # : S(A)→ N by

#(1) = 0,

#({a}) = 1,

#(x ∪ y) = #(x) +#(y)−#(x ∩ y).
Note that a, n1, n2, c and i all can be mapped to refl by writing out the definitions. ù

50 5. APPLICATIONS

The next important property is extensionality, which says that sets are equal iff they
have the same elements. Our goal is now to show that this holds if we have decidable
equality on the elements. First, we need to define when two sets are equal.

Definition 5.3.15 (Subsets). Let A be a type with decidable equality. We define a
function ⊆ : S(A)× S(A)→ BOOL by induction as follows

⊆ (1, x) = True,

⊆ ({a}, x) = a ∈ x ,
⊆ (y ∪ z, x) = (⊆ (y, x))∧ (⊆ (z, x)).

Note again that the needed equalities hold, and thus we get the function ⊆ : S(A) ×
S(A)→ BOOL. ù

We will denote ⊆ (x , y) by x ⊆ y . This relation says that x is a subset of y . It can
also be defined in an alternative way by saying that every element of x is an element
of y .

Definition 5.3.16 (Subsets). Let A be a type with decidable equality. Then we define
the type x ⊆′ y as

∏

a : A.a ∈ x True→ a ∈ y True. ù

Now we show that these definitions coincide

Proposition 5.3.17. For a type A with decidable equality the types x ⊆ y True and
x ⊆′ y are isomorphic.

PROOF. Since both x ⊆ y True and x ⊆′ y are mere propositions, it suffices to
make maps x ⊆ y True→ x ⊆′ y and x ⊆′ y → x ⊆ y True by Lemma 5.3.2. We
start with making a map x ⊆ y True→ x ⊆′ y and for that we use the elimination
rule of S(A) on x . More specifically, for all x we make an inhabitant of the type

∏

y :
A.(x ⊆ y True→ x ⊆′ y), and that will be done using the elimination rule. If x = 1,
then the type a ∈ x True is always ⊥, so we have a map

∏

a : A.a ∈ x True→
a ∈ y True.

In the second case we have x = {b}, and then the statements x ⊆ y and a ∈ x are
equal to b ∈ y and a == b respectively. This means we need to make a map b ∈ y
True→
∏

a : A.a == b True→ a ∈ y True Given a path p : b ∈ y True, an
inhabitant a : A and a path q : a == b True, we get make a path r : a ∈ y True.
Note that q gives a path q′ : a b that can be used to make a path q′′ : a ∈ y b ∈ y .
Now we can make the path r : a ∈ y True. from p and q′′.

In the third case we assume that x = z1 ∪ z2 and that we have maps f : z1 ⊆
y True → z1 ⊆′ y and g : z2 ⊆ y True → z2 ⊆′ y . By definition we have
x ⊆ y = z1 ⊆ y ∧ z2 ⊆ y , and we have an isomorphism x ⊆ y True ' z1 ⊆ y
True×z2 ⊆ y True. Also, by definition we have a ∈ x = a ∈ z1 ∨ a ∈ z2, and this
gives a ∈ x True ' a ∈ z1 True+a ∈ z2 True. Given are inhabitants p1 × p2 :
z1 ⊆ y True×z2 ⊆ y True, a : A, and q : a ∈ z1 True+a ∈ z2 True, we need
to make an inhabitant a ∈ y True. Note that f p1 a : a ∈ z1 True→ a ∈ y True
and g p2 a : a ∈ z2 True→ a ∈ y True. Using a case distinction on q and the maps
f p1 a and g p2 a, we can thus find an inhabitant of a ∈ y True, and that finishes this
case.

Lastly, we need to say where the paths a, c, n1, n2 and i are mapped to. Again note
that the type x ⊆ y True→ x ⊆′ y is a mere proposition, and thus we can always
find the desired paths. Hence, the elimination rule gives a map

∏

x : A
∏

y : A.(x ⊆
y True→ x ⊆′ y) which is what we wanted.

5.3. DATA TYPES IN FUNCTIONAL PROGRAMMING 51

To finish the proof we need to make a map
∏

x : A
∏

y : A.(x ⊆′ y)→ x ⊆ y
True. For that we use the elimination rule of S(A) on x and we let y : A be arbitrary.
First, we take x to be 1, and then we always have an inhabitant refl of x ⊆ y True.
Hence, we can send everything of (x ⊆′ y) to refl.

Next we assume x = {b}, and in that case x ⊆ y = b ∈ y . Suppose that we have
f : x ⊆′ y . Since x = {b}, we always have an inhabitant refl of b ∈ x True. Now
f b refl is an inhabitant of b ∈ y True which is isomorphic to x ⊆ y True.

For the last case we assume that x = z1 ∪ z2 and that we have f :
∏

a : A.z1 ⊆′
y → z1 ⊆ y True and g : z2 ⊆′ y → z2 ⊆ y True. Given a map h :

∏

a : A.a ∈
x True → a ∈ y True, our goal is to make an inhabitant of x ⊆ y True, and
note that x ⊆ y True ' (z1 ⊆ y True)× (z2 ⊆ y True). By definition we have
a ∈ x = a ∈ z1 ∨ z2, and therefore a ∈ x True ' (a ∈ z1 True) + (a ∈ z2 True).
Since we have a map h :

∏

a : A.a ∈ x True → a ∈ y True, we get maps
h1 :
∏

a : A.a ∈ z1 True → a ∈ y True and h2 :
∏

a : A.a ∈ z2 True →
a ∈ y True. Hence, we can use the maps f , g, h1, and h2 to make an inhabitant of
x ⊆ y True' (z1 ⊆ y True)× (z2 ⊆ y True), and that finishes this case.

Again we have to say where the paths are mapped to, and this is easy because the
type
∏

y : A.x ⊆′ y → x ⊆ y True is mere proposition. By the elimination rule we
thus get a map

∏

x : A
∏

y : A.x ⊆′ y → x ⊆ y True.
All in all, we have constructed maps x ⊆ y True→ x ⊆′ y and x ⊆′ y → x ⊆

y True, and because these types are mere propositions, they are isomorphic. �

Note that equality can be defined using the subset relation in the following way.

Definition 5.3.18 (Equality of Sets). Let A be a set with decidable equality. We define
a function == : S(A)× S(A)→ BOOL sending (s, t) to s ⊆ t ∧ t ⊆ s. ù

Because of Proposition 5.3.17, two sets x and y are equal iff they have the same el-
ements. Our goal is now to show that S(A) has decidable equality given by this relation,
which means that we need to show that ||x y|| and x == y True are isomorphic.
Before we do so, we need some lemmas.

Lemma 5.3.19. We have a term of type
∏

x : S(A)
∏

a : A.a ∈ x True→ ||x ∪{a}
x ||.

PROOF. Again we use S(A)-elimination. If x = 1, then a ∈ x True is always the
type ⊥, and thus we get a map a ∈ x True→ ||x ∪ {a} x ||. Next we assume case
that x = {b}, that we have an inhabitant a : A, and that we have a path p : a ∈ x True.
Note that a ∈ x True and a == b True are isomorphic, and thus we get a path
p′ : a b, because == is the equality on A. The path p′ gives a path q : {a} {b},
and thus we get a path {b}∪ {a} {b}∪ {b}. Because i gives a path {b}∪ {b} {b},
we thus get a path x ∪ {a} x .

Lastly, we take x = y ∪ z and we assume that we have maps f :
∏

a : A.a ∈
y True → ||y ∪ {a} y|| and g :

∏

a : A.a ∈ z True → ||z ∪ {a} z||. Let
a : A be arbitrary. Note that a ∈ x = a ∈ y ∨ a ∈ z, so a ∈ x True ' (a ∈ y
True) + (a ∈ z True). Using the elimination rule of +, we thus get a map h of type
∏

a : A.a ∈ x True→ ((||y∪{a} y||)+(||z∪{a} z||)). Given a path y∪{a} y ,
we get a path y ∪ {a} ∪ z y ∪ z, and this gives a path y ∪ z ∪ {a} y ∪ z. Similarly,
a path z ∪ {a} z gives a path y ∪ z ∪ {a} y ∪ z. We can thus conclude that we
have a term of type

∏

a : A.a ∈ x True → ||x ∪ {a} x ||, and this finishes the
argument. �

52 5. APPLICATIONS

Lemma 5.3.20. We always have an inhabitant of
∏

x : S(A)
∏

y : S(A)
∏

z : S(A).||x ∪
(y ∪ z) (x ∪ y)∪ (y ∪ z)||.

PROOF. Note that we always have an inhabitant of ||x∪x x || by Proposition 5.3.8.
Hence, we have an inhabitant of ||x ∪ (y ∪ z) x ∪ x ∪ (y ∪ z)||. Now we can use
the associative and the commutative property to find an inhabitant of ||x ∪ (y ∪ z)
(x ∪ y)∪ (y ∪ z)||. �

These properties we need to show extensionality. We need one more lemma about
subsets before we prove give the theorem.

Lemma 5.3.21. We have an isomorphism between ||x ∪ y x || and y ⊆ x True.

PROOF. To prove this lemma, we use Lemma 5.3.2, so it suffices to make maps
||x ∪ y x || → y ⊆ x True and y ⊆ x True→ ||x ∪ y x ||. We start with the
map ||x ∪ y x || → y ⊆ x True. By Proposition 5.3.17 the types y ⊆ x True
and
∏

a : A.a ∈ y True→ a ∈ x True are isomorphic, so instead we make a map
||x ∪ y x || → y ⊆′ x . To make the map ||x ∪ y x || → y ⊆ x True, we use the
elimination rule of the truncation, and thus it suffices to make a map x ∪ y x → y ⊆
x True. So, let p : x ∪ y x , let a : A be any inhabitant and suppose we have a path
q : a ∈ y True. Since a ∈ x∪ y = a ∈ x∨a ∈ y , we have a path q′ : a ∈ x∪ y True.
From p and q we now get a path of type a ∈ x True which is what we wanted.

Next we make the map y ⊆ x True→ ||x∪ y x ||. For this we use induction on
y . If y = 1, then it is trivially true, because we always have the inhabitant refl, because
x ∪ y = x . Next we assume that y = {a}, and then {a} ⊆ x True is isomorphic to
a ∈ x True. in that case it follows from Lemma 5.3.19.

Lastly, we take y = z1 ∪ z2, and we assume that we have maps f : z1 ⊆ x
True → ||x ∪ z1 x || and g : z2 ⊆ x True → ||x ∪ z2 x ||. Our goal is to
make a map h : z1 ∪ z2 ⊆ x True → ||x ∪ z1 ∪ z2 x ||. By definition we have
z1 ∪ z2 ⊆ x = z1 ⊆ x ∧ z2 ⊆ x , so there is an isomorphism z1 ∪ z2 ⊆ x True '
(z1 ⊆ x True) × (z2 ⊆ x True). From f and g we now get an inhabitant of
||x∪z1 x ||×||x∪z2 x ||. Note that we have a path x∪(z1∪z2) (x∪z1)∪(x∪z2)
by Lemma 5.3.20, and thus we get an inhabitant of the type

||(x ∪ (z1 ∪ z2) (x ∪ z1)∪ (x ∪ z2))× (x ∪ z1 x)× (x ∪ z2 x)||.

We can map (x ∪ (z1 ∪ z2) (x ∪ z1)∪ (x ∪ z2))× (x ∪ z1 x)× (x ∪ z2 x) to the
type z ∪ (z1 ∪ z2) x , and thus we get an inhabitant of ||z ∪ (z1 ∪ z2) x || which is
what we wanted. �

Now we can prove the following theorem which gives the extensionality and says
that == is decidable equality on S(A).

Theorem 5.3.22. Let A be a type with decidable equality. For all x , y : S(A) the types
||x y|| and x == y True are isomorphic.

PROOF. Note that x == y True and x ⊆ y ∧ y ⊆ x True are isomorphic
by definition of x == y . Also, since both x ⊆ y and y ⊆ x are booleans, this type is
isomorphic to (x ⊆ y True)×(y ⊆ x True). By Lemma 5.3.21 this is isomorphic to
||x∪ y x ||×||x∪ y y||. This is isomorphic to ||x y||, because we have functions
||x y|| → ||x ∪ y x || × ||x ∪ y y|| and ||x ∪ y x || × ||x ∪ y y|| → ||x y||
which means that they are isomorphic by Lemma 5.3.2. �

5.3. DATA TYPES IN FUNCTIONAL PROGRAMMING 53

Other axioms for finite sets can be proven as well, for example, the power set
axiom. We can make a map P : S(A)→ S(S(A)) which gives the power set of a finite
set. For this construction we will not give the details. However, note that the power set
goes from S(A) to S(S(A)).

To make a universe of set theory, we need to have all the axioms. This means that
we have finite sets with elements from A, but also the finite sets with elements from
S(A). Let us consider the sequence of maps

S(A)→ S(A+ S(A))→ S(A+ S(A) + S(S(A)))→

We define a type Xn+1 = S(X1+ . . .+Xn). This means that inhabitants of Xn+1 are finite
sets with elements from X1, X2, . . ., or Xn. Furthermore, we have inclusions fn : Xn →
Xn+1. Now we take the colimit and for that we define the type

Inductive Sets (A : TYPE) :=
| ι :
∏

n : N.Xn→ Sets(A)
| p :
∏

n : N
∏

x : Xn.ιn x (fn ◦ ιn+1) x

This gives a universe of sets.
Concluding, we have constructed a type S(A) of finite subsets of A. This type has

the desired properties of finite sets, and thus we can prove all usual properties of finite
sets. For example, to prove that ∩ is associative, we can now just copy the usual proof
from set theory. We can also give the notion of a function f from A to B which is an
inhabitant of S(A×B), and with this notion we can prove the Cantor-Schröder-Bernstein
Theorem.

CHAPTER 6

Conclusion and Related Work

6.1. Conclusion

As we have seen, there are several approaches to define higher inductive types.
These differ in how much they allow: recursion might be allowed or not, and there
could be restrictions on the inductive constructors. We have to give different interpre-
tations for all of these, because if we allow functions in the point constructors, then we
have to do a more to ensure that it will remain an interpretation. With these defini-
tions one can extend proof assistants to allow formal definitions of S1, N/2N, and the
truncation ||A||.

However, we have not given an interpretation of recursive higher inductive types.
If we interpret them in the same way as nonrecursive higher inductive types, then there
might be problems, because the recursion principle might not be satisfied. So, we would
like to make a type T with a path p :

∏

x : T.s t where s and t are terms. Our idea
was to interpret the type by approximating it step by step starting with T0 and making T1
by gluing the path to T0. We repeat this process to get T2, T3, . . . , Tω, Tω+1, . . ., and then
we take the colimit. However, we could not get the proof to work. A point of research
would thus be to give an interpretation of the recursive higher inductive types.

6.2. Required Improvements

There are some issues in the presented definitions which require a solution. First
of all, the Fi and Gi in the definitions of higher inductive types should have better
formation rules, so that their type can be controlled in a better way. The types of F ′i
and G′i can be better controlled if Fi and Gi are built in a certain way. Only a specified
list of term constructors should be allowed, and then F ′i and G′i can be made using a
lifting property.

Secondly, maps In → A are equal too often, and for simplicity we restrict to the
case for n = 1. Since I1 is contractible, we can treat it as the type with one point. So,
if f , g : I1 are equal iff we have a path between f 0 and g 0. If we consider the type

Inductive D :=
| ∗ : D
| p : ∗ ∗
| s : Irec(∗,∗, p) Irec(∗,∗, refl)

We can make a map D → S1 sending ∗ to base, p to loop, and we have an image for
s, because the maps Irec(∗,∗, p) and Irec(∗,∗, refl) are equal in 0. This should not be
possible, because we cannot make such a map in topology. A possible solution would
be to work with circles instead of cubes.

Also, this can also be solved by using cubical type theory. There one was I, which
is not considered to be a type, but one can use it to make paths. In a higher inductive

55

56 6. CONCLUSION AND RELATED WORK

type one would specify Fi and Gi using judgments x : I ` Fi and x : I ` Gi , and that
gives two paths. This gives a path between two paths.

Last, but not least, in the interpretation one should pay attention to fibrant objects.
This is because in interpretations of homotopy type theory the objects are taken to be
the fibrant objects. For it to be sensible, the construction needs to preserve fibrant
objects.

6.3. Related Work

There is already a variety of work on higher inductive types. One approach is
based on homotopy-initial algebras [AGS12, Soj15]. In the syntax of an inductive type
we describe the constructors using functors, and the interpretation of the inductive
type is given by an initial algebra of these. Higher inductive types are the homotopical
analogue of these types, so a possible way to interpret these would be homotopy initial
algebras. For that we first interpret inductive types in intensional type theory using
homotopy initial algebras [AGS12]. Let F be a functor defining an inductive type, then
we define

Definition 6.3.1 (F -Algebra). An F-algebra consists of a type A and a map g : F(A)→ A.
We denote this by (A, g). ù

Definition 6.3.2 (Morphisms between F -Algebras). Let (C , g) and (D, h) be F -algebras.
We define the type

F-Alg((C , g), (D, h)) =
∑

f : C → D.g ◦ f h ◦ F(g) ù

This resembles the definitions of category theory. Now we can define

Definition 6.3.3 (Homotopy-Initial Algebra). Let (C , g) be an F -algebra. Then we say
(C , g) is a homotopy-initial algebra iff for all F -algebras (D, h) the type F-Alg((C , g), (D, h))
is contractible. ù

This means that all inhabitants of the type F-Alg((C , g), (D, h)) are equal, and that
there indeed is an inhabitant. The main theorem of [AGS12] says that a type satis-
fies the rules of an inductive type if and only if it is a homotopy initial algebra. So,
this gives a characterization of inductive types using homotopy initial algebras, and a
characterization of inductive types in categories.

This can be extended to some higher inductive types [Soj15]. Here the definition
of W-suspensions is given.

Definition 6.3.4 (W-suspension). Suppose, we have types A, C : TYPE, and suppose
that x : A ` B[x] : TYPE, and suppose that we have functions l, r : C → A. Then
we define W (A, B, C , l, r), which we abbreviate by W , to be the higher inductive type
generated by the constructors

sup :
∏

a : A.(B[a/x]→W)→W,

cell :
∏

c : C
∏

t : B[l c]→W
∏

s : B[r c]→W. sup(l c, t) sup(r c, s). ù

This is based on W-types as defined in Section 2.2.7. The constructors are inhab-
itants of A, and the arity and parameters are from B. So, if we have a constructor a,
and we know all the arguments and parameters, then we can make a new inhabitant.
This is said by the rule of sup. Equalities between inhabitants can be added with cell.
The type C contains the names of paths, and the functions l and r give the constructor

6.3. RELATED WORK 57

of the left and right endpoint of the paths respectively. For these types the introduction
rule, elimination rule and computation rules can be given. Furthermore, one can prove
that the rules are satisfied by some type if and only if it is a homotopy initial algebra.

This definition and theorem are very beautiful and insightful. It provides a sensible
argument for the fact that higher inductive types are indeed the homotopical analogue
of inductive types. However, they only allow 1-constructors, so it cannot be used to give
a definition of the torus. Furthermore, recursion is not allowed, but for truncations a
similar result can be proved. The semantics of these types are given as homotopy initial
algebras, and that does not explicitly construct interpretations of higher inductive types.

Another important article discussing higher inductive types is [LS12]. This arti-
cle discusses the semantics of higher inductive types, and shows that these exist in a
wide class of model categories. However, again they only allow 0-constructors and 1-
constructors. Furthermore, they specify what the syntax should give for the semantics
to work, but not what the syntax should be.

Related to higher inductive types are hubs and spokes [Uni13]. This construction
allows us to specify higher inductive types by just giving 1-constructors. To give a path
p q in a type T , it is sufficient to give a path p◦q−1 refl. For simplicity, we assume
that p and q are paths between terms x and y . Note that we have a map f : S1 → T
sending base to x and loop to p ◦ q−1. Instead of adding the rule p q, we add a
constructor ∗ and the rule

∏

x : S1. f x ∗
We fill the circle, and this gives an equality between p and q. Similarly, this can be done
for higher paths if we have spheres Sn. The advantage is that higher inductive types can
be specified using just 1-constructors, but the disadvantage is that only propositional
computation rules are preserved and not definitional ones.

Some recursive higher inductive types can be reduced to nonrecursive higher induc-
tive types [Kra16, vD15]. One example would be the propositional truncation [vD15],
and the argument in generalized in [Kra16]. To get the truncation of A as a nonrecur-
sive higher inductive type, we need two constructions. The first one is similar to the
truncation.

Inductive |A| (A : TYPE) :=
| ι : A→ |A|
| p :
∏

x : A
∏

y : A.ι x ι y

The other one is a colimit, and for that we assume we can prove x : N ` A[x] : TYPE.
In that case we define

Inductive colimn:N A[n/x] :=
| ι :
∏

n : N.A[n/x]→ colimn:N A[n/x]
| p :
∏

n : N
∏

a : A[n/x].(ι n+ 1) a (ι n) a

Then the truncation is the colimit of |A|, |(|A|)|, and so on. Note that this gives a
clear semantics of the truncation in our interpretation of higher inductive types. It is
unclear whether this is possible for all recursive higher inductive types.

We think our interpretation is related to cubical sets [BCH14], and that the inter-
pretation of higher inductive types can easily be computed in cubical sets. The category
of cubical sets is a presheaf model of type theory, and there are explicit definitions of
the intervals in that model. Also, colimits can be computed, and that would give a
formula of higher inductive types in cubical sets. It is possible to define the geometric
realization of cubical sets, and then one can compare higher inductive types with their

58 6. CONCLUSION AND RELATED WORK

topological interpretation. A question is whether this procedure where one first inter-
prets the higher inductive type in cubical sets and then takes the geometric realization,
gives the ‘right’ space for concrete examples.

Bibliography

[AGS12] Steve Awodey, Nicola Gambino, and Kristina Sojakova, Inductive Types in Homotopy Type Theory,
Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer Science, IEEE
Computer Society, 2012, pp. 95–104.

[AW09] Steve Awodey and Michael A Warren, Homotopy Theoretic Models of Identity Types, Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 146, Cambridge Univ Press, 2009, pp. 45–
55.

[BCH14] Marc Bezem, Thierry Coquand, and Simon Huber, A Model of Type Theory in Cubical Sets, 19th
International Conference on Types for Proofs and Programs (TYPES 2013), vol. 26, 2014, pp. 107–
128.

[EM45] Samuel Eilenberg and Saunders MacLane, General Theory of Natural Equivalences, Transactions of
the American Mathematical Society 58 (1945), no. 2, 231–294.

[Hat02] Allen Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, New York, 2002.
[Hed98] Michael Hedberg, A Coherence Theorem for Martin-Löf ’s Type Theory, Journal of Functional Pro-

gramming 8 (1998), no. 04, 413–436.
[Kan58] Daniel M Kan, Adjoint Functors, Transactions of the American Mathematical Society 87 (1958),

no. 2, 294–329.
[Kra16] Nicolai Kraus, Constructions with Non-Recursive Higher Inductive Types, ACM/IEEE Symposium on

Logic in Computer Science (LICS), 2016.
[LB13] Daniel R Licata and Guillaume Brunerie, πn(Sn) in Homotopy Type Theory, Certified Programs and

Proofs, Springer, 2013, pp. 1–16.
[LS12] Peter LeFanu Lumsdaine and Michael Shulman, Semantics of Higher Inductive Types, Preprint (2012).
[LS13] Daniel R Licata and Michael Shulman, Calculating the Fundamental Group of the Circle in Homotopy

Type Theory, Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer
Science, IEEE Computer Society, 2013, pp. 223–232.

[May99] Jon Peter May, A Concise Course in Algebraic Topology, University of Chicago Press, 1999.
[ML78] Saunders Mac Lane, Categories for the Working Mathematician, vol. 5, Springer Science & Business

Media, 1978.
[MLM92] Saunders Mac Lane and Ieke Moerdijk, Sheaves in Geometry and Logic, Springer Science & Business

Media, 1992.
[Soj15] Kristina Sojakova, Higher Inductive Types as Homotopy-Initial Algebras, POPL, ACM, 2015, pp. 31–

42.
[Uni13] The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations of Mathematics,

http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.
[vD15] Floris van Doorn, Constructing the Propositional Truncation using Non-Recursive HITs, arXiv preprint

arXiv:1512.02274 (2015).

59

http://homotopytypetheory.org/book

APPENDIX A

List of Rules in Type Theory

Γ ` A : TYPE Γ ` B : TYPE⇒F
Γ ` A⇒ B : TYPE

Γ , x : A` f (x) : B
⇒I

Γ ` λ(x : A). f (x) : A⇒ B

Γ ` a : A Γ ` f : A⇒ B
⇒E

Γ ` apply(f , a) : B

apply(λ(x : A). f (x), a) = f (a)

Γ ` A : TYPE Γ ` B : TYPE×F
Γ ` A× B : TYPE

Γ ` a : A Γ ` b : B×I
Γ ` (a, b) : A× B

Γ ` x : A× B×I1
Γ ` p1(x) : A

Γ ` x : A× B×I2
Γ ` p2(x) : B

p1(a, b) = a, p2(a, b) = b

Γ ` A : TYPE Γ ` B : TYPE+F
Γ ` A+ B : TYPE

Γ ` a : A+I1
Γ ` ι1(a) : A+ B

Γ ` a : A+I2
Γ ` ι2(b) : A+ B

Γ ` p : A+ B Γ , x : A` f (x) : C Γ , y : B ` g(y) : C
+E

Γ ` (case p of x : A then f (x), of x : B then g(x)) : C

61

62 A. LIST OF RULES IN TYPE THEORY

f (a) = case ι1(a) of x : A then f (ι1(a)), of x : B then g(ι1(a))

g(b) = case ι2(b) of x : A then f (ι2(b)), of x : B then g(ι2(b))

⊥F : · ` ⊥ : TYPE

⊥E : C , x :⊥ : TYPE `!C(x) : C

>F : · ` > : TYPE

> I : · ` ∗ :>
Γ , C : TYPE ` c : C

>E
Γ , x :> ` > -rec(c, x) : C

> -rec(c,∗) = c

NF : · ` N : TYPE

N I 0 : · ` 0 : N
N I S : n : N ` S(n) : N

Γ ` A : TYPE Γ ` a : A Γ , x : A` f (x) : A
NE

Γ , n : N ` N rec(a, f , n) : A

N rec(a, f , 0) = a

N rec(a, f , S(n)) = f (g(n))

Γ ` A : TYPE Γ , x : A` B(x) : TYPE∏

F
Γ `
∏

x:A B(x) : TYPE

Γ , x : A` f (x) : B(x)∏

I
Γ ` λ(x : A). f (x) :

∏

x:A B(x)

Γ ` a : A Γ ` f :
∏

x:A B(x)∏

E
Γ ` apply(f , a) : B(a)

apply(λ(x : A). f (x), a) = f (a)

Γ ` A : TYPE Γ , x : A` B(x) : TYPE∑

F
Γ `
∑

x:A B(x) : TYPE

Γ , a : A` b : B(a)∑

I
Γ ` (a, b) :
∑

x:A B(x)

A. LIST OF RULES IN TYPE THEORY 63

Γ ` p :
∑

x:A B(x) Γ ` C : TYPE Γ , x : A, y : B(x) ` f (x , y) : C∑

E
Γ ` case p of B(x) then f (x , p) : C

f (x , y) = case (x , y) of B(x) then f (x , y)

Γ ` A : TYPE Γ , a : A` B(a) : TYPE
WF

Γ `Wx:AB(x) : TYPE

Γ ` a : A Γ ` f : B(a)→Wx:AB(x)
W I

Γ ` sup(a, b) : Wx:AB(x)

Γ , w : Wx:AB(x) ` C(w) : TYPE Γ , x : A, f : B(x)→Wx:AB(x), g :
∏

y:B(x) C(f (y)) ` c(x , f , g) : C(sup(x , y))
WE

Γ , w : Wx:AB(x) ` wrec(w, c) : C(w)

wrec(sup(a, f), c) = c(a, f ,λy. wrec(u(y), c))

Γ ` x : A Γ ` y : A
 F

Γ ` x y : TYPE

Γ ` x : A I
Γ ` reflx : x x

Γ , p : x y ` C(x , y, p) : TYPE Γ , x : A` t(x) : C(x , x , reflx) E
Γ , p : x y ` J(t, x , y, p) : C(x , y, p)

J(t, x , x , reflx) = t

	Acknowledgements
	Contents
	Chapter 1. Introduction
	Chapter 2. Type Theory
	2.1. Basic Type Theory
	2.2. Examples of Types
	2.3. Homotopy Type Theory
	2.4. Elementary Examples of Higher Inductive Types

	Chapter 3. Categorical Interpretation
	3.1. Basic Definitions and Examples
	3.2. Constructions
	3.3. Interpreting Type Theory

	Chapter 4. Higher Inductive Types
	4.1. CW-Complexes
	4.2. Intervals
	4.3. Basic Introduction of Higher Inductive Types
	4.4. Higher Inductive Types from Points
	4.5. Nonrecursive Higher Inductive Types
	4.6. Recursive Higher Inductive Types

	Chapter 5. Applications
	5.1. Modular Arithmetic
	5.2. Truncations
	5.3. Data Types in Functional Programming

	Chapter 6. Conclusion and Related Work
	6.1. Conclusion
	6.2. Required Improvements
	6.3. Related Work

	Bibliography
	Appendix A. List of Rules in Type Theory

