Require Export HoTT. Require Import HitTactics. Module Export FinSet. Section FSet. Variable A : Type. Private Inductive FSet : Type := | E : FSet | L : A -> FSet | U : FSet -> FSet -> FSet. Notation "{| x |}" := (L x). Infix "∪" := U (at level 8, right associativity). Notation "∅" := E. Axiom assoc : forall (x y z : FSet ), x ∪ (y ∪ z) = (x ∪ y) ∪ z. Axiom comm : forall (x y : FSet), x ∪ y = y ∪ x. Axiom nl : forall (x : FSet), ∅ ∪ x = x. Axiom nr : forall (x : FSet), x ∪ ∅ = x. Axiom idem : forall (x : A), {| x |} ∪ {|x|} = {|x|}. Axiom trunc : IsHSet FSet. Fixpoint FSet_rec (P : Type) (H: IsHSet P) (e : P) (l : A -> P) (u : P -> P -> P) (assocP : forall (x y z : P), u x (u y z) = u (u x y) z) (commP : forall (x y : P), u x y = u y x) (nlP : forall (x : P), u e x = x) (nrP : forall (x : P), u x e = x) (idemP : forall (x : A), u (l x) (l x) = l x) (x : FSet) {struct x} : P := (match x return _ -> _ -> _ -> _ -> _ -> _ -> P with | E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => e | L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => l a | U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => u (FSet_rec P H e l u assocP commP nlP nrP idemP y) (FSet_rec P H e l u assocP commP nlP nrP idemP z) end) assocP commP nlP nrP idemP H. Axiom FSet_rec_beta_assoc : forall (P : Type) (H: IsHSet P) (e : P) (l : A -> P) (u : P -> P -> P) (assocP : forall (x y z : P), u x (u y z) = u (u x y) z) (commP : forall (x y : P), u x y = u y x) (nlP : forall (x : P), u e x = x) (nrP : forall (x : P), u x e = x) (idemP : forall (x : A), u (l x) (l x) = l x) (x y z : FSet), ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (assoc x y z) = (assocP (FSet_rec P H e l u assocP commP nlP nrP idemP x) (FSet_rec P H e l u assocP commP nlP nrP idemP y) (FSet_rec P H e l u assocP commP nlP nrP idemP z) ). Axiom FSet_rec_beta_comm : forall (P : Type) (H: IsHSet P) (e : P) (l : A -> P) (u : P -> P -> P) (assocP : forall (x y z : P), u x (u y z) = u (u x y) z) (commP : forall (x y : P), u x y = u y x) (nlP : forall (x : P), u e x = x) (nrP : forall (x : P), u x e = x) (idemP : forall (x : A), u (l x) (l x) = l x) (x y : FSet), ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (comm x y) = (commP (FSet_rec P H e l u assocP commP nlP nrP idemP x) (FSet_rec P H e l u assocP commP nlP nrP idemP y) ). Axiom FSet_rec_beta_nl : forall (P : Type) (H: IsHSet P) (e : P) (l : A -> P) (u : P -> P -> P) (assocP : forall (x y z : P), u x (u y z) = u (u x y) z) (commP : forall (x y : P), u x y = u y x) (nlP : forall (x : P), u e x = x) (nrP : forall (x : P), u x e = x) (idemP : forall (x : A), u (l x) (l x) = l x) (x : FSet), ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nl x) = (nlP (FSet_rec P H e l u assocP commP nlP nrP idemP x) ). Axiom FSet_rec_beta_nr : forall (P : Type) (H: IsHSet P) (e : P) (l : A -> P) (u : P -> P -> P) (assocP : forall (x y z : P), u x (u y z) = u (u x y) z) (commP : forall (x y : P), u x y = u y x) (nlP : forall (x : P), u e x = x) (nrP : forall (x : P), u x e = x) (idemP : forall (x : A), u (l x) (l x) = l x) (x : FSet), ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nr x) = (nrP (FSet_rec P H e l u assocP commP nlP nrP idemP x) ). Axiom FSet_rec_beta_idem : forall (P : Type) (H: IsHSet P) (e : P) (l : A -> P) (u : P -> P -> P) (assocP : forall (x y z : P), u x (u y z) = u (u x y) z) (commP : forall (x y : P), u x y = u y x) (nlP : forall (x : P), u e x = x) (nrP : forall (x : P), u x e = x) (idemP : forall (x : A), u (l x) (l x) = l x) (x : A), ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (idem x) = idemP x. (* Induction principle *) Fixpoint FSet_ind (P : FSet -> Type) (H : forall a : FSet, IsHSet (P a)) (eP : P E) (lP : forall a: A, P (L a)) (uP : forall (x y: FSet), P x -> P y -> P (U x y)) (assocP : forall (x y z : FSet) (px: P x) (py: P y) (pz: P z), assoc x y z # (uP x (U y z) px (uP y z py pz)) = (uP (U x y) z (uP x y px py) pz)) (commP : forall (x y: FSet) (px: P x) (py: P y), comm x y # uP x y px py = uP y x py px) (nlP : forall (x : FSet) (px: P x), nl x # uP E x eP px = px) (nrP : forall (x : FSet) (px: P x), nr x # uP x E px eP = px) (idemP : forall (x : A), idem x # uP (L x) (L x) (lP x) (lP x) = lP x) (x : FSet) {struct x} : P x := (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with | E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => eP | L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => lP a | U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z (FSet_ind P H eP lP uP assocP commP nlP nrP idemP y) (FSet_ind P H eP lP uP assocP commP nlP nrP idemP z) end) H assocP commP nlP nrP idemP. Axiom FSet_ind_beta_assoc : forall (P : FSet -> Type) (H : forall a : FSet, IsHSet (P a)) (eP : P E) (lP : forall a: A, P (L a)) (uP : forall (x y: FSet), P x -> P y -> P (U x y)) (assocP : forall (x y z : FSet) (px: P x) (py: P y) (pz: P z), assoc x y z # (uP x (U y z) px (uP y z py pz)) = (uP (U x y) z (uP x y px py) pz)) (commP : forall (x y: FSet) (px: P x) (py: P y), comm x y # uP x y px py = uP y x py px) (nlP : forall (x : FSet) (px: P x), nl x # uP E x eP px = px) (nrP : forall (x : FSet) (px: P x), nr x # uP x E px eP = px) (idemP : forall (x : A), idem x # uP (L x) (L x) (lP x) (lP x) = lP x) (x y z : FSet), apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (assoc x y z) = (assocP x y z (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x) (FSet_ind P H eP lP uP assocP commP nlP nrP idemP y) (FSet_ind P H eP lP uP assocP commP nlP nrP idemP z) ). Axiom FSet_ind_beta_comm : forall (P : FSet -> Type) (H : forall a : FSet, IsHSet (P a)) (eP : P E) (lP : forall a: A, P (L a)) (uP : forall (x y: FSet), P x -> P y -> P (U x y)) (assocP : forall (x y z : FSet) (px: P x) (py: P y) (pz: P z), assoc x y z # (uP x (U y z) px (uP y z py pz)) = (uP (U x y) z (uP x y px py) pz)) (commP : forall (x y : FSet) (px: P x) (py: P y), comm x y # uP x y px py = uP y x py px) (nlP : forall (x : FSet) (px: P x), nl x # uP E x eP px = px) (nrP : forall (x : FSet) (px: P x), nr x # uP x E px eP = px) (idemP : forall (x : A), idem x # uP (L x) (L x) (lP x) (lP x) = lP x) (x y : FSet), apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (comm x y) = (commP x y (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x) (FSet_ind P H eP lP uP assocP commP nlP nrP idemP y) ). Axiom FSet_ind_beta_nl : forall (P : FSet -> Type) (H : forall a : FSet, IsHSet (P a)) (eP : P E) (lP : forall a: A, P (L a)) (uP : forall (x y: FSet), P x -> P y -> P (U x y)) (assocP : forall (x y z : FSet) (px: P x) (py: P y) (pz: P z), assoc x y z # (uP x (U y z) px (uP y z py pz)) = (uP (U x y) z (uP x y px py) pz)) (commP : forall (x y : FSet) (px: P x) (py: P y), comm x y # uP x y px py = uP y x py px) (nlP : forall (x : FSet) (px: P x), nl x # uP E x eP px = px) (nrP : forall (x : FSet) (px: P x), nr x # uP x E px eP = px) (idemP : forall (x : A), idem x # uP (L x) (L x) (lP x) (lP x) = lP x) (x : FSet), apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nl x) = (nlP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x) ). Axiom FSet_ind_beta_nr : forall (P : FSet -> Type) (H : forall a : FSet, IsHSet (P a)) (eP : P E) (lP : forall a: A, P (L a)) (uP : forall (x y: FSet), P x -> P y -> P (U x y)) (assocP : forall (x y z : FSet) (px: P x) (py: P y) (pz: P z), assoc x y z # (uP x (U y z) px (uP y z py pz)) = (uP (U x y) z (uP x y px py) pz)) (commP : forall (x y : FSet) (px: P x) (py: P y), comm x y # uP x y px py = uP y x py px) (nlP : forall (x : FSet) (px: P x), nl x # uP E x eP px = px) (nrP : forall (x : FSet) (px: P x), nr x # uP x E px eP = px) (idemP : forall (x : A), idem x # uP (L x) (L x) (lP x) (lP x) = lP x) (x : FSet), apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nr x) = (nrP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x) ). Axiom FSet_ind_beta_idem : forall (P : FSet -> Type) (H : forall a : FSet, IsHSet (P a)) (eP : P E) (lP : forall a: A, P (L a)) (uP : forall (x y: FSet), P x -> P y -> P (U x y)) (assocP : forall (x y z : FSet) (px: P x) (py: P y) (pz: P z), assoc x y z # (uP x (U y z) px (uP y z py pz)) = (uP (U x y) z (uP x y px py) pz)) (commP : forall (x y : FSet) (px: P x) (py: P y), comm x y # uP x y px py = uP y x py px) (nlP : forall (x : FSet) (px: P x), nl x # uP E x eP px = px) (nrP : forall (x : FSet) (px: P x), nr x # uP x E px eP = px) (idemP : forall (x : A), idem x # uP (L x) (L x) (lP x) (lP x) = lP x) (x : A), apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (idem x) = idemP x. End FSet. Instance FSet_recursion A : HitRecursion (FSet A) := { indTy := _; recTy := _; H_inductor := FSet_ind A; H_recursor := FSet_rec A }. Arguments E {_}. Arguments U {_} _ _. Arguments L {_} _. End FinSet. Section functions. Parameter A : Type. Context (A_eqdec: forall (x y : A), Decidable (x = y)). Definition deceq (x y : A) := if dec (x = y) then true else false. Notation "{| x |}" := (L x). Infix "∪" := U (at level 8, right associativity). Notation "∅" := E. (** Properties of union *) Lemma union_idem : forall (X : FSet A), U X X = X. Proof. hinduction; try (intros; apply set_path2). - apply nr. - intros. apply idem. - intros X Y HX HY. etransitivity. rewrite assoc. rewrite (comm _ X Y). rewrite <- (assoc _ Y X X). rewrite comm. rewrite assoc. rewrite HX. rewrite HY. reflexivity. rewrite comm. reflexivity. Defined. (** Membership predicate *) Definition isIn : A -> FSet A -> Bool. Proof. intros a. hrecursion. - exact false. - intro a'. apply (deceq a a'). - apply orb. - intros x y z. compute. destruct x; reflexivity. - intros x y. compute. destruct x, y; reflexivity. - intros x. compute. reflexivity. - intros x. compute. destruct x; reflexivity. - intros a'. compute. destruct (A_eqdec a a'); reflexivity. Defined. Infix "∈" := isIn (at level 9, right associativity). Lemma isIn_singleton_eq a b : a ∈ {| b |} = true -> a = b. Proof. cbv. destruct (A_eqdec a b). intro. apply p. intro X. contradiction (false_ne_true X). Defined. Lemma isIn_empty_false a : a ∈ ∅ = true -> Empty. Proof. cbv. intro X. contradiction (false_ne_true X). Defined. Lemma isIn_union a X Y : a ∈ (X ∪ Y) = (a ∈ X || a ∈ Y)%Bool. Proof. reflexivity. Qed. (** Set comprehension *) Definition comprehension : (A -> Bool) -> FSet A -> FSet A. Proof. intros P. hrecursion. - apply E. - intro a. refine (if (P a) then L a else E). - apply U. - intros. cbv. apply assoc. - intros. cbv. apply comm. - intros. cbv. apply nl. - intros. cbv. apply nr. - intros. cbv. destruct (P x); simpl. + apply idem. + apply nl. Defined. Lemma comprehension_false Y : comprehension (fun a => a ∈ ∅) Y = E. Proof. hrecursion Y; try (intros; apply set_path2). - cbn. reflexivity. - cbn. reflexivity. - intros x y IHa IHb. cbn. rewrite IHa. rewrite IHb. rewrite nl. reflexivity. Defined. Lemma comprehension_union X Y Z : U (comprehension (fun a => isIn a Y) X) (comprehension (fun a => isIn a Z) X) = comprehension (fun a => isIn a (U Y Z)) X. Proof. hrecursion X; try (intros; apply set_path2). - cbn. apply nl. - cbn. intro a. destruct (isIn a Y); simpl; destruct (isIn a Z); simpl. apply idem. apply nr. apply nl. apply nl. - cbn. intros X1 X2 IH1 IH2. rewrite assoc. rewrite (comm _ (comprehension (fun a : A => isIn a Y) X1) (comprehension (fun a : A => isIn a Y) X2)). rewrite <- (assoc _ (comprehension (fun a : A => isIn a Y) X2) (comprehension (fun a : A => isIn a Y) X1) (comprehension (fun a : A => isIn a Z) X1) ). rewrite IH1. rewrite comm. rewrite assoc. rewrite (comm _ (comprehension (fun a : A => isIn a Z) X2) _). rewrite IH2. apply comm. Defined. Lemma comprehension_idem' `{Funext}: forall (X:FSet A), forall Y, comprehension (fun x => x ∈ (U X Y)) X = X. Proof. hinduction. all: try (intros; apply path_forall; intro; apply set_path2). - intro Y. cbv. reflexivity. - intros a Y. cbn. unfold deceq; destruct (dec (a = a)); simpl. + reflexivity. + contradiction n. reflexivity. - intros X1 X2 IH1 IH2 Y. cbn -[isIn]. f_ap. + rewrite <- assoc. apply (IH1 (U X2 Y)). + rewrite (comm _ X1 X2). rewrite <- (assoc _ X2 X1 Y). apply (IH2 (U X1 Y)). Defined. Lemma comprehension_idem `{Funext}: forall (X:FSet A), comprehension (fun x => x ∈ X) X = X. Proof. intros X. enough (comprehension (fun x : A => isIn x (U X X)) X = X). rewrite (union_idem) in X0. assumption. apply comprehension_idem'. Defined. (** Set intersection *) Definition intersection : FSet A -> FSet A -> FSet A. Proof. intros X Y. apply (comprehension (fun (a : A) => isIn a X) Y). Defined. Lemma intersection_comm X Y: intersection X Y = intersection Y X. Proof. hrecursion X; try (intros; apply set_path2). - cbn. unfold intersection. apply comprehension_false. - cbn. unfold intersection. intros a. hrecursion Y; try (intros; apply set_path2). + cbn. reflexivity. + cbn. intros. unfold deceq. destruct (dec (a0 = a)). rewrite p. destruct (dec (a=a)). reflexivity. contradiction n. reflexivity. destruct (dec (a = a0)). contradiction n. apply p^. reflexivity. + cbn -[isIn]. intros Y1 Y2 IH1 IH2. rewrite IH1. rewrite IH2. symmetry. rewrite (comprehension_union (L a)). reflexivity. - intros X1 X2 IH1 IH2. cbn. unfold intersection in *. rewrite <- IH1. rewrite <- IH2. rewrite comprehension_union. reflexivity. Defined. (** Subset ordering *) Definition subset (x : FSet A) (y : FSet A) : Bool. Proof. hrecursion x. - apply true. - intro a. apply (isIn a y). - intros a b. apply (andb a b). - intros a b c. compute. destruct a; reflexivity. - intros a b. compute. destruct a, b; reflexivity. - intros x. compute. reflexivity. - intros x. compute. destruct x;reflexivity. - intros a. simpl. destruct (isIn a y); reflexivity. Defined. Infix "⊆" := subset (at level 8, right associativity). End functions.