HITs-Examples/FiniteSets/prelude.v

172 lines
5.0 KiB
Coq

(** Some general prerequisities in homotopy type theory. *)
Require Import HoTT.
Definition squash (A : Type) `{Decidable A} : Type :=
match dec A with
| inl _ => Unit
| inr _ => Empty
end.
Definition from_squash (A : Type) `{Decidable A} {x : squash A} : A.
Proof.
unfold squash in *.
destruct (dec A).
- apply a.
- contradiction.
Defined.
Lemma ap_inl_path_sum_inl {A B} (x y : A) (p : inl x = inl y) :
ap inl (path_sum_inl B p) = p.
Proof.
transitivity (@path_sum _ B (inl x) (inl y) (path_sum_inl B p));
[ | apply (eisretr_path_sum _) ].
destruct (path_sum_inl B p).
reflexivity.
Defined.
Lemma ap_equiv {A B} (f : A <~> B) {x y : A} (p : x = y) :
ap (f^-1 o f) p = eissect f x @ p @ (eissect f y)^.
Proof.
destruct p.
hott_simpl.
Defined.
Global Instance hprop_lem `{Univalence} (T : Type) (Ttrunc : IsHProp T) : IsHProp (T + ~T).
Proof.
apply (equiv_hprop_allpath _)^-1.
intros [x | nx] [y | ny] ; try f_ap ; try (apply Ttrunc) ; try contradiction.
- apply equiv_hprop_allpath. apply _.
Defined.
Global Instance inl_embedding (A B : Type) : IsEmbedding (@inl A B).
Proof.
- intros [x1 | x2].
* apply ishprop_hfiber_inl.
* intros [z p].
contradiction (inl_ne_inr _ _ p).
Defined.
Global Instance inr_embedding (A B : Type) : IsEmbedding (@inr A B).
Proof.
- intros [x1 | x2].
* intros [z p].
contradiction (inr_ne_inl _ _ p).
* apply ishprop_hfiber_inr.
Defined.
Class MerelyDecidablePaths A :=
m_dec_path : forall (a b : A), Decidable(Trunc (-1) (a = b)).
Definition S1_merely_decidable_equality `{Univalence} : MerelyDecidablePaths S1.
Proof.
simple refine (S1_ind _ _ _) ; simpl.
- simple refine (S1_ind _ _ _) ; simpl.
* apply (inl (tr idpath)).
* apply path_ishprop.
- apply path_forall.
intro z.
rewrite transport_forall, transport_sum.
destruct
(transportD (fun _ : S1 => S1)
(fun x y : S1 => Decidable (Trunc (-1) (x = y)))
loop
(transport (fun _ : S1 => S1) loop^ z)
(S1_ind
(fun x : S1 => Decidable (Trunc (-1) (base = x)))
(inl (tr 1%path))
(transport_sum loop (inl (tr 1))
@
ap inl
(path_ishprop
(transport
(fun a : S1 => Trunc (-1) (base = a))
loop
(tr 1))
(tr 1)
)
)
(transport (fun _ : S1 => S1) loop^ z)
)
)
as [t | n].
** revert t.
revert z.
simple refine (S1_ind (fun _ => _) _ _) ; simpl.
*** intros.
apply path_ishprop.
*** apply path_forall.
intro z.
rewrite transport_forall, transport_paths_FlFr, ap_const.
hott_simpl.
apply set_path2.
** contradiction n.
rewrite ?transport_const.
simple refine (S1_ind (fun q => Trunc (-1) (base = q)) _ _ z) ; simpl.
*** apply (tr idpath).
*** apply path_ishprop.
Defined.
Global Instance DecidableToMerely A (H : DecidablePaths A) : MerelyDecidablePaths A.
Proof.
intros x y.
destruct (dec (x = y)).
- apply (inl(tr p)).
- refine (inr(fun p => _)).
strip_truncations.
apply (n p).
Defined.
Section merely_decidable_operations.
Variable (A B : Type).
Context `{MerelyDecidablePaths A} `{MerelyDecidablePaths B}.
Global Instance merely_decidable_paths_prod : MerelyDecidablePaths(A * B).
Proof.
intros x y.
destruct (m_dec_path (fst x) (fst y)) as [p1 | n1],
(m_dec_path (snd x) (snd y)) as [p2 | n2].
- apply inl.
strip_truncations.
apply tr.
apply path_prod ; assumption.
- apply inr.
intros pp.
strip_truncations.
apply (n2 (tr (ap snd pp))).
- apply inr.
intros pp.
strip_truncations.
apply (n1 (tr (ap fst pp))).
- apply inr.
intros pp.
strip_truncations.
apply (n1 (tr (ap fst pp))).
Defined.
Global Instance merely_decidable_sum : MerelyDecidablePaths (A + B).
Proof.
intros [x1 | x2] [y1 | y2].
- destruct (m_dec_path x1 y1) as [t | n].
* apply inl.
strip_truncations.
apply (tr(ap inl t)).
* refine (inr(fun p => _)).
strip_truncations.
refine (n(tr _)).
refine (path_sum_inl _ p).
- refine (inr(fun p => _)).
strip_truncations.
refine (inl_ne_inr x1 y2 p).
- refine (inr(fun p => _)).
strip_truncations.
refine (inr_ne_inl x2 y1 p).
- destruct (m_dec_path x2 y2) as [t | n].
* apply inl.
strip_truncations.
apply (tr(ap inr t)).
* refine (inr(fun p => _)).
strip_truncations.
refine (n(tr _)).
refine (path_sum_inr _ p).
Defined.
End merely_decidable_operations.