mirror of https://github.com/nmvdw/HITs-Examples
693 lines
16 KiB
Coq
693 lines
16 KiB
Coq
Require Import HoTT.
|
||
Require Export HoTT.
|
||
|
||
Module Export FinSet.
|
||
|
||
Set Implicit Arguments.
|
||
|
||
Parameter A: Type.
|
||
|
||
Private Inductive FSet : Type :=
|
||
| empty : FSet
|
||
| L : A -> FSet
|
||
| U : FSet -> FSet -> FSet.
|
||
Infix "∪" := U (at level 8, right associativity).
|
||
Notation "∅" := empty.
|
||
|
||
|
||
Axiom assoc : forall (x y z : FSet),
|
||
x ∪ (y ∪ z) = (x ∪ y) ∪ z.
|
||
|
||
Axiom comm : forall (x y : FSet),
|
||
x ∪ y = y ∪ x.
|
||
|
||
Axiom neutl : forall (x : FSet),
|
||
∅ ∪ x = x.
|
||
|
||
Axiom neutr : forall (x : FSet),
|
||
x ∪ ∅ = x.
|
||
|
||
Axiom idem : forall (x : A),
|
||
(L x) ∪ (L x) = L x.
|
||
|
||
Axiom trunc : IsHSet FSet.
|
||
|
||
Fixpoint FSet_rec
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : FSet)
|
||
{struct x}
|
||
: P
|
||
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P with
|
||
| empty => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => e
|
||
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => l a
|
||
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => u
|
||
(FSet_rec H e l u assocP commP nlP nrP idemP y)
|
||
(FSet_rec H e l u assocP commP nlP nrP idemP z)
|
||
end) assocP commP nlP nrP idemP H.
|
||
|
||
|
||
Axiom FSet_rec_beta_assoc : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x y z : FSet),
|
||
ap (FSet_rec H e l u assocP commP nlP nrP idemP) (assoc x y z)
|
||
=
|
||
(assocP (FSet_rec H e l u assocP commP nlP nrP idemP x)
|
||
(FSet_rec H e l u assocP commP nlP nrP idemP y)
|
||
(FSet_rec H e l u assocP commP nlP nrP idemP z)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_comm : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x y : FSet),
|
||
ap (FSet_rec H e l u assocP commP nlP nrP idemP) (comm x y)
|
||
=
|
||
(commP (FSet_rec H e l u assocP commP nlP nrP idemP x)
|
||
(FSet_rec H e l u assocP commP nlP nrP idemP y)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_nl : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : FSet),
|
||
ap (FSet_rec H e l u assocP commP nlP nrP idemP) (neutl x)
|
||
=
|
||
(nlP (FSet_rec H e l u assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_nr : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : FSet),
|
||
ap (FSet_rec H e l u assocP commP nlP nrP idemP) (neutr x)
|
||
=
|
||
(nrP (FSet_rec H e l u assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_idem : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : A),
|
||
ap (FSet_rec H e l u assocP commP nlP nrP idemP) (idem x)
|
||
=
|
||
idemP x.
|
||
|
||
Fixpoint FSet_ind
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P empty)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y: FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
neutl x # uP empty x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
neutr x # uP x empty px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : FSet)
|
||
{struct x}
|
||
: P x
|
||
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
|
||
| empty => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => eP
|
||
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
|
||
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP z)
|
||
end) H assocP commP nlP nrP idemP.
|
||
|
||
|
||
Axiom FSet_ind_beta_assoc : forall
|
||
(A : Type)
|
||
(P : FSet A -> Type)
|
||
(eP : P (empty A))
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet A), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet A)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y: FSet A) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet A) (px: P x),
|
||
nl x # uP (empty A) x eP px = px)
|
||
(nrP : forall (x : FSet A) (px: P x),
|
||
nr x # uP x (empty A) px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x y z : FSet A),
|
||
apD (FSet_ind P eP lP uP assocP commP nlP nrP idemP)
|
||
(assoc x y z)
|
||
=
|
||
(assocP x y z
|
||
(FSet_ind P eP lP uP assocP commP nlP nrP idemP x)
|
||
(FSet_ind P eP lP uP assocP commP nlP nrP idemP y)
|
||
(FSet_ind P eP lP uP assocP commP nlP nrP idemP z)
|
||
).
|
||
|
||
|
||
|
||
Axiom FSet_ind_beta_comm : forall
|
||
(A : Type)
|
||
(P : FSet A -> Type)
|
||
(eP : P (empty A))
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet A), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet A)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y: FSet A) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet A) (px: P x),
|
||
nl x # uP (empty A) x eP px = px)
|
||
(nrP : forall (x : FSet A) (px: P x),
|
||
nr x # uP x (empty A) px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x y : FSet A),
|
||
apD (FSet_ind P eP lP uP assocP commP nlP nrP idemP) (comm x y)
|
||
=
|
||
(commP x y
|
||
(FSet_ind P eP lP uP assocP commP nlP nrP idemP x)
|
||
(FSet_ind P eP lP uP assocP commP nlP nrP idemP y)
|
||
).
|
||
|
||
Axiom FSet_ind_beta_nl : forall
|
||
(A : Type)
|
||
(P : FSet A -> Type)
|
||
(eP : P (empty A))
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet A), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet A)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y: FSet A) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet A) (px: P x),
|
||
nl x # uP (empty A) x eP px = px)
|
||
(nrP : forall (x : FSet A) (px: P x),
|
||
nr x # uP x (empty A) px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : FSet A),
|
||
apD (FSet_ind P eP lP uP assocP commP nlP nrP idemP) (nl x)
|
||
=
|
||
(nlP x (FSet_ind P eP lP uP assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_ind_beta_nr : forall
|
||
(A : Type)
|
||
(P : FSet A -> Type)
|
||
(eP : P (empty A))
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet A), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet A)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y: FSet A) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet A) (px: P x),
|
||
nl x # uP (empty A) x eP px = px)
|
||
(nrP : forall (x : FSet A) (px: P x),
|
||
nr x # uP x (empty A) px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : FSet A),
|
||
apD (FSet_ind P eP lP uP assocP commP nlP nrP idemP) (nr x)
|
||
=
|
||
(nrP x (FSet_ind P eP lP uP assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_ind_beta_idem : forall
|
||
(A : Type)
|
||
(P : FSet A -> Type)
|
||
(eP : P (empty A))
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet A), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet A)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y: FSet A) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet A) (px: P x),
|
||
nl x # uP (empty A) x eP px = px)
|
||
(nrP : forall (x : FSet A) (px: P x),
|
||
nr x # uP x (empty A) px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : A),
|
||
apD (FSet_ind P eP lP uP assocP commP nlP nrP idemP) (idem x)
|
||
=
|
||
idemP x.
|
||
|
||
Parameter A: Type.
|
||
|
||
Theorem idemSet :
|
||
forall x: FSet A, U x x = x.
|
||
Proof.
|
||
simple refine (FSet_ind _ _ _ _ _ _ _ _ _).
|
||
- cbn.
|
||
apply nl.
|
||
- cbn.
|
||
apply idem.
|
||
- cbn.
|
||
intros.
|
||
rewrite assoc.
|
||
rewrite (comm (U x y)).
|
||
rewrite assoc.
|
||
rewrite X.
|
||
rewrite <- assoc.
|
||
rewrite X0.
|
||
reflexivity.
|
||
- cbn.
|
||
|
||
(* todo optimisation *)
|
||
Theorem FSetRec (A : Type)
|
||
(P : Type)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : FSet A) : P.
|
||
Proof.
|
||
simple refine (FSet_ind _ _ _ _ _ _ _ _ _ x).
|
||
- apply e.
|
||
- apply l.
|
||
- apply (fun _ => fun _ => u).
|
||
- cbn.
|
||
intros.
|
||
transitivity (u px (u py pz)).
|
||
apply transport_const.
|
||
apply assocP.
|
||
- cbn.
|
||
intros.
|
||
transitivity (u px py).
|
||
apply transport_const.
|
||
apply commP.
|
||
- cbn.
|
||
intros.
|
||
transitivity (u e px).
|
||
apply transport_const.
|
||
apply nlP.
|
||
- cbn.
|
||
intros.
|
||
transitivity (u px e).
|
||
apply transport_const.
|
||
apply nrP.
|
||
- cbn.
|
||
intros.
|
||
transitivity (u (l x0) (l x0)).
|
||
apply transport_const.
|
||
apply idemP.
|
||
Defined.
|
||
|
||
|
||
|
||
|
||
Theorem FSet_rec_beta_assocT : forall
|
||
(A : Type)
|
||
(P : Type)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x y z : FSet A),
|
||
ap (FSetRec e l u assocP commP nlP nrP idemP) (assoc x y z)
|
||
=
|
||
(assocP (FSetRec e l u assocP commP nlP nrP idemP x)
|
||
(FSetRec e l u assocP commP nlP nrP idemP y)
|
||
(FSetRec e l u assocP commP nlP nrP idemP z)
|
||
).
|
||
Proof.
|
||
intros.
|
||
eapply (cancelL (transport_const (assoc x y z) _ ) ).
|
||
simple refine
|
||
((apD_const
|
||
(FSetRec e l u assocP commP nlP nrP idemP)
|
||
(assoc x y z))^ @ _).
|
||
apply FSet_ind_beta_assoc.
|
||
|
||
|
||
Theorem FSet_rec_beta_commT : forall
|
||
(A : Type)
|
||
(P : Type)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x y : FSet A),
|
||
ap (FSet_rec e l u assocP commP nlP nrP idemP) (comm x y)
|
||
=
|
||
(commP (FSet_rec e l u assocP commP nlP nrP idemP x)
|
||
(FSet_rec e l u assocP commP nlP nrP idemP y)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_nl : forall
|
||
(A : Type)
|
||
(P : Type)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : FSet A),
|
||
ap (FSet_rec e l u assocP commP nlP nrP idemP) (nl x)
|
||
=
|
||
(nlP (FSet_rec e l u assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_nr : forall
|
||
(A : Type)
|
||
(P : Type)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : FSet A),
|
||
ap (FSet_rec e l u assocP commP nlP nrP idemP) (nr x)
|
||
=
|
||
(nrP (FSet_rec e l u assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_idem : forall
|
||
(A : Type)
|
||
(P : Type)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : A),
|
||
ap (FSet_rec e l u assocP commP nlP nrP idemP) (idem x)
|
||
=
|
||
idemP x.
|
||
|
||
|
||
End FinSet.
|
||
|
||
Definition isIn : forall
|
||
(A : Type)
|
||
(eq : A -> A -> Bool),
|
||
A -> FSet A -> Bool.
|
||
Proof.
|
||
intro A.
|
||
intro eq.
|
||
intro a.
|
||
refine (FSet_rec A _ _ _ _ _ _ _ _ _).
|
||
Unshelve.
|
||
|
||
Focus 6.
|
||
apply false.
|
||
|
||
Focus 6.
|
||
intro a'.
|
||
apply (eq a a').
|
||
|
||
Focus 6.
|
||
intro b.
|
||
intro b'.
|
||
apply (orb b b').
|
||
|
||
Focus 3.
|
||
intros.
|
||
compute.
|
||
reflexivity.
|
||
|
||
Focus 1.
|
||
intros.
|
||
compute.
|
||
destruct x.
|
||
reflexivity.
|
||
destruct y.
|
||
reflexivity.
|
||
reflexivity.
|
||
|
||
Focus 1.
|
||
intros.
|
||
compute.
|
||
destruct x.
|
||
destruct y.
|
||
reflexivity.
|
||
reflexivity.
|
||
destruct y.
|
||
reflexivity.
|
||
reflexivity.
|
||
|
||
Focus 1.
|
||
intros.
|
||
compute.
|
||
destruct x.
|
||
reflexivity.
|
||
reflexivity.
|
||
|
||
intros.
|
||
compute.
|
||
destruct (eq a x).
|
||
reflexivity.
|
||
reflexivity.
|
||
Defined.
|
||
|
||
Definition comprehension : forall
|
||
(A : Type)
|
||
(eq : A -> A -> Bool),
|
||
(A -> Bool) -> FSet A -> FSet A.
|
||
Proof.
|
||
intro A.
|
||
intro eq.
|
||
intro phi.
|
||
refine (FSet_rec A _ _ _ _ _ _ _ _ _).
|
||
Unshelve.
|
||
|
||
Focus 6.
|
||
apply empty.
|
||
|
||
Focus 6.
|
||
intro a.
|
||
apply (if (phi a) then L A a else (empty A)).
|
||
|
||
Focus 6.
|
||
intro x.
|
||
intro y.
|
||
apply (U A x y).
|
||
|
||
Focus 3.
|
||
intros.
|
||
compute.
|
||
apply nl.
|
||
|
||
Focus 1.
|
||
intros.
|
||
compute.
|
||
apply assoc.
|
||
|
||
Focus 1.
|
||
intros.
|
||
compute.
|
||
apply comm.
|
||
|
||
Focus 1.
|
||
intros.
|
||
compute.
|
||
apply nr.
|
||
|
||
intros.
|
||
compute.
|
||
destruct (phi x).
|
||
apply idem.
|
||
apply nl.
|
||
Defined.
|
||
|
||
Definition intersection : forall (A : Type) (eq : A -> A -> Bool),
|
||
FSet A -> FSet A -> FSet A.
|
||
Proof.
|
||
intro A.
|
||
intro eq.
|
||
intro x.
|
||
intro y.
|
||
apply (comprehension A eq (fun (a : A) => isIn A eq a x) y).
|
||
Defined.
|
||
|
||
Definition subset (A : Type) (eq : A -> A -> Bool) (x : FSet A) (y : FSet A) : Bool.
|
||
Proof.
|
||
refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
|
||
Unshelve.
|
||
|
||
Focus 6.
|
||
apply x.
|
||
|
||
Focus 6.
|
||
apply true.
|
||
|
||
Focus 6.
|
||
intro a.
|
||
apply (isIn A eq a y).
|
||
|
||
Focus 6.
|
||
intro b.
|
||
intro b'.
|
||
apply (andb b b').
|
||
|
||
Focus 1.
|
||
intros.
|
||
compute.
|
||
destruct x0.
|
||
destruct y0.
|
||
reflexivity.
|
||
reflexivity.
|
||
reflexivity.
|
||
|
||
Focus 1.
|
||
intros.
|
||
compute.
|
||
destruct x0.
|
||
destruct y0.
|
||
reflexivity.
|
||
reflexivity.
|
||
destruct y0.
|
||
reflexivity.
|
||
reflexivity.
|
||
|
||
Focus 1.
|
||
intros.
|
||
compute.
|
||
reflexivity.
|
||
|
||
Focus 1.
|
||
intros.
|
||
compute.
|
||
destruct x0.
|
||
reflexivity.
|
||
reflexivity.
|
||
|
||
intros.
|
||
destruct (isIn A eq x0 y).
|
||
compute.
|
||
reflexivity.
|
||
compute.
|
||
reflexivity.
|
||
Defined.
|
||
|
||
Definition equal_set (A : Type) (eq : A -> A -> Bool) (x : FSet A) (y : FSet A) : Bool
|
||
:= andb (subset A eq x y) (subset A eq y x).
|
||
|
||
Fixpoint eq_nat n m : Bool :=
|
||
match n, m with
|
||
| O, O => true
|
||
| O, S _ => false
|
||
| S _, O => false
|
||
| S n1, S m1 => eq_nat n1 m1
|
||
end.
|
||
|
||
|
||
|
||
Theorem test : forall (A:Type) (eq : A -> A -> Bool)
|
||
(u: FSet A), ~(u = empty _) -> exists (a: A) (v: FSet A),
|
||
u = U _ (L _ a) v /\ (isIn _ eq a v) = False.
|
||
Proof.
|
||
intros A eq.
|
||
i
|
||
|
||
|
||
|
||
|
||
|