HITs-Examples/FiniteSets/properties.v

641 lines
17 KiB
Coq

Require Import HoTT HitTactics.
Require Export definition operations.
Section properties.
Context {A : Type}.
Context {A_deceq : DecidablePaths A}.
(** union properties *)
Theorem union_idem : forall x: FSet A, U x x = x.
Proof.
hinduction;
try (intros ; apply set_path2) ; cbn.
- apply nl.
- apply idem.
- intros x y P Q.
rewrite assoc.
rewrite (comm x y).
rewrite <- (assoc y x x).
rewrite P.
rewrite (comm y x).
rewrite <- (assoc x y y).
f_ap.
Defined.
(** isIn properties *)
Lemma isIn_singleton_eq (a b: A) : isIn a (L b) = true -> a = b.
Proof. unfold isIn. simpl.
destruct (dec (a = b)). intro. apply p.
intro X.
contradiction (false_ne_true X).
Defined.
Lemma isIn_empty_false (a: A) : isIn a E = true -> Empty.
Proof.
cbv. intro X.
contradiction (false_ne_true X).
Defined.
Lemma isIn_union (a: A) (X Y: FSet A) :
isIn a (U X Y) = (isIn a X || isIn a Y)%Bool.
Proof. reflexivity. Qed.
(** comprehension properties *)
Lemma comprehension_false Y : comprehension (fun a => isIn a E) Y = E.
Proof.
hrecursion Y; try (intros; apply set_path2).
- cbn. reflexivity.
- cbn. reflexivity.
- intros x y IHa IHb.
cbn.
rewrite IHa.
rewrite IHb.
rewrite nl.
reflexivity.
Defined.
Theorem comprehension_or : forall ϕ ψ (x: FSet A),
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x)
(comprehension ψ x).
Proof.
intros ϕ ψ.
hinduction; try (intros; apply set_path2).
- cbn. symmetry ; apply nl.
- cbn. intros.
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
* apply idem.
* apply nr.
* apply nl.
* apply nl.
- simpl. intros x y P Q.
cbn.
rewrite P.
rewrite Q.
rewrite <- assoc.
rewrite (assoc (comprehension ψ x)).
rewrite (comm (comprehension ψ x) (comprehension ϕ y)).
rewrite <- assoc.
rewrite <- assoc.
reflexivity.
Defined.
Theorem comprehension_subset : forall ϕ (X : FSet A),
U (comprehension ϕ X) X = X.
Proof.
intros ϕ.
hrecursion; try (intros ; apply set_path2) ; cbn.
- apply nl.
- intro a.
destruct (ϕ a).
* apply union_idem.
* apply nl.
- intros X Y P Q.
rewrite assoc.
rewrite <- (assoc (comprehension ϕ X) (comprehension ϕ Y) X).
rewrite (comm (comprehension ϕ Y) X).
rewrite assoc.
rewrite P.
rewrite <- assoc.
rewrite Q.
reflexivity.
Defined.
(** intersection properties *)
Lemma intersection_0l: forall X: FSet A, intersection E X = E.
Proof.
hinduction;
try (intros ; apply set_path2).
- reflexivity.
- intro a.
reflexivity.
- unfold intersection.
intros x y P Q.
cbn.
rewrite P.
rewrite Q.
apply nl.
Defined.
Lemma intersection_0r (X: FSet A): intersection X E = E.
Proof. exact idpath. Defined.
Theorem intersection_La : forall (a : A) (X : FSet A),
intersection (L a) X = if isIn a X then L a else E.
Proof.
intro a.
hinduction; try (intros ; apply set_path2).
- reflexivity.
- intro b.
cbn.
destruct (dec (a = b)) as [p|np].
* rewrite p.
destruct (dec (b = b)) as [|nb]; [reflexivity|].
by contradiction nb.
* destruct (dec (b = a)); [|reflexivity].
by contradiction np.
- unfold intersection.
intros x y P Q.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a x) ; destruct (isIn a y).
* apply idem.
* apply nr.
* apply nl.
* apply nl.
Defined.
Lemma intersection_comm X Y: intersection X Y = intersection Y X.
Proof.
hrecursion X; try (intros; apply set_path2).
- cbn. unfold intersection. apply comprehension_false.
- cbn. unfold intersection. intros a.
hrecursion Y; try (intros; apply set_path2).
+ cbn. reflexivity.
+ cbn. intros b.
destruct (dec (a = b)) as [pa|npa].
* rewrite pa.
destruct (dec (b = b)) as [|nb]; [reflexivity|].
by contradiction nb.
* destruct (dec (b = a)) as [pb|]; [|reflexivity].
by contradiction npa.
+ cbn -[isIn]. intros Y1 Y2 IH1 IH2.
rewrite IH1.
rewrite IH2.
symmetry.
apply (comprehension_or (fun a => isIn a Y1) (fun a => isIn a Y2) (L a)).
- intros X1 X2 IH1 IH2.
cbn.
unfold intersection in *.
rewrite <- IH1.
rewrite <- IH2.
apply comprehension_or.
Defined.
Theorem intersection_idem : forall (X : FSet A), intersection X X = X.
Proof.
hinduction; try (intros ; apply set_path2).
- reflexivity.
- intro a.
destruct (dec (a = a)).
* reflexivity.
* contradiction (n idpath).
- intros X Y IHX IHY.
f_ap;
unfold intersection in *.
+ transitivity (U (comprehension (fun a => isIn a X) X) (comprehension (fun a => isIn a Y) X)).
apply comprehension_or.
rewrite IHX.
rewrite (comm X).
apply comprehension_subset.
+ transitivity (U (comprehension (fun a => isIn a X) Y) (comprehension (fun a => isIn a Y) Y)).
apply comprehension_or.
rewrite IHY.
apply comprehension_subset.
Defined.
(** assorted lattice laws *)
Lemma distributive_La (z : FSet A) (a : A) : forall Y : FSet A,
intersection (U (L a) z) Y = U (intersection (L a) Y) (intersection z Y).
Proof.
hinduction; try (intros ; apply set_path2) ; cbn.
- symmetry ; apply nl.
- intros b.
destruct (dec (b = a)) ; cbn.
* destruct (isIn b z).
+ rewrite union_idem.
reflexivity.
+ rewrite nr.
reflexivity.
* rewrite nl ; reflexivity.
- intros X1 X2 P Q.
rewrite P. rewrite Q.
rewrite <- assoc.
rewrite (comm (comprehension (fun a0 : A => isIn a0 z) X1)).
rewrite <- assoc.
rewrite assoc.
rewrite (comm (comprehension (fun a0 : A => isIn a0 z) X2)).
reflexivity.
Defined.
Theorem distributive_intersection_U (X1 X2 Y : FSet A) :
intersection (U X1 X2) Y = U (intersection X1 Y) (intersection X2 Y).
Proof.
hinduction X1; try (intros ; apply set_path2) ; cbn.
- rewrite intersection_0l.
rewrite nl.
rewrite nl.
reflexivity.
- intro a.
rewrite intersection_La.
rewrite distributive_La.
rewrite intersection_La.
reflexivity.
- intros Z1 Z2 P Q.
unfold intersection in *.
cbn.
rewrite comprehension_or.
rewrite comprehension_or.
reflexivity.
Defined.
Theorem intersection_isIn : forall a (x y: FSet A),
isIn a (intersection x y) = andb (isIn a x) (isIn a y).
Proof.
intros a x y.
hinduction x; try (intros ; apply set_path2) ; cbn.
- rewrite intersection_0l.
reflexivity.
- intro b.
rewrite intersection_La.
destruct (dec (a = b)) ; cbn.
* rewrite p.
destruct (isIn b y).
+ cbn.
destruct (dec (b = b)); [reflexivity|].
by contradiction n.
+ reflexivity.
* destruct (isIn b y).
+ cbn.
destruct (dec (a = b)); [|reflexivity].
by contradiction n.
+ reflexivity.
- intros X1 X2 P Q.
rewrite distributive_intersection_U.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a X1) ; destruct (isIn a X2) ; destruct (isIn a y) ;
reflexivity.
Defined.
Theorem intersection_assoc (X Y Z: FSet A) :
intersection X (intersection Y Z) = intersection (intersection X Y) Z.
Proof.
hinduction X; try (intros ; apply set_path2).
- cbn.
rewrite intersection_0l.
rewrite intersection_0l.
rewrite intersection_0l.
reflexivity.
- intros a.
cbn.
rewrite intersection_La.
rewrite intersection_La.
rewrite intersection_isIn.
destruct (isIn a Y).
* rewrite intersection_La.
destruct (isIn a Z).
+ reflexivity.
+ reflexivity.
* rewrite intersection_0l.
reflexivity.
- unfold intersection. cbn.
intros X1 X2 P Q.
rewrite comprehension_or.
rewrite P.
rewrite Q.
rewrite comprehension_or.
cbn.
rewrite comprehension_or.
reflexivity.
Defined.
Theorem comprehension_all : forall (X : FSet A),
comprehension (fun a => isIn a X) X = X.
Proof.
hinduction; try (intros ; apply set_path2).
- reflexivity.
- intro a.
destruct (dec (a = a)).
* reflexivity.
* contradiction (n idpath).
- intros X1 X2 P Q.
f_ap; (etransitivity; [ apply comprehension_or |]).
rewrite P. rewrite (comm X1).
apply comprehension_subset.
rewrite Q.
apply comprehension_subset.
Defined.
Theorem distributive_U_int (X1 X2 Y : FSet A) :
U (intersection X1 X2) Y = intersection (U X1 Y) (U X2 Y).
Proof.
hinduction X1; try (intros ; apply set_path2) ; cbn.
- rewrite intersection_0l.
rewrite nl.
unfold intersection.
rewrite comprehension_all.
pose (intersection_comm Y X2).
unfold intersection in p.
rewrite p.
rewrite comprehension_subset.
reflexivity.
- intros.
assert (Y = intersection (U (L a) Y) Y) as HY.
{ unfold intersection. symmetry.
transitivity (U (comprehension (fun x => isIn x (L a)) Y) (comprehension (fun x => isIn x Y) Y)).
apply comprehension_or.
rewrite comprehension_all.
apply comprehension_subset. }
rewrite <- HY.
admit.
- unfold intersection.
intros Z1 Z2 P Q.
rewrite comprehension_or.
assert (U (U (comprehension (fun a : A => isIn a Z1) X2)
(comprehension (fun a : A => isIn a Z2) X2))
Y = U (U (comprehension (fun a : A => isIn a Z1) X2)
(comprehension (fun a : A => isIn a Z2) X2))
(U Y Y)).
rewrite (union_idem Y).
reflexivity.
rewrite X.
rewrite <- assoc.
rewrite (assoc (comprehension (fun a : A => isIn a Z2) X2)).
rewrite Q.
cbn.
rewrite
(comm (U (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2)
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y)) Y).
rewrite assoc.
rewrite P.
rewrite <- assoc. cbn.
rewrite (assoc (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
rewrite (comm (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
rewrite <- assoc.
rewrite assoc.
enough (C : (U (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) X2)
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2))
= (comprehension (fun a : A => (isIn a Z1 || isIn a Z2 || isIn a Y)%Bool) X2)).
rewrite C.
enough (D : (U (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y))
= (comprehension (fun a : A => (isIn a Z1 || isIn a Z2 || isIn a Y)%Bool) Y)).
rewrite D.
reflexivity.
* repeat (rewrite comprehension_or).
rewrite <- assoc.
rewrite (comm (comprehension (fun a : A => isIn a Y) Y)).
rewrite <- (assoc (comprehension (fun a : A => isIn a Z2) Y)).
rewrite union_idem.
rewrite assoc.
reflexivity.
* repeat (rewrite comprehension_or).
rewrite <- assoc.
rewrite (comm (comprehension (fun a : A => isIn a Y) X2)).
rewrite <- (assoc (comprehension (fun a : A => isIn a Z2) X2)).
rewrite union_idem.
rewrite assoc.
reflexivity.
Admitted.
Theorem absorb_0 (X Y : FSet A) : U X (intersection X Y) = X.
Proof.
hinduction X; try (intros ; apply set_path2) ; cbn.
- rewrite nl.
apply intersection_0l.
- intro a.
rewrite intersection_La.
destruct (isIn a Y).
* apply union_idem.
* apply nr.
- intros X1 X2 P Q.
rewrite distributive_intersection_U.
rewrite <- assoc.
rewrite (comm X2).
rewrite assoc.
rewrite assoc.
rewrite P.
rewrite <- assoc.
rewrite (comm _ X2).
rewrite Q.
reflexivity.
Defined.
Theorem absorb_1 (X Y : FSet A) : intersection X (U X Y) = X.
Proof.
hrecursion X; try (intros ; apply set_path2).
- cbn.
rewrite nl.
apply comprehension_false.
- intro a.
rewrite intersection_La.
destruct (dec (a = a)).
* destruct (isIn a Y).
+ apply union_idem.
+ apply nr.
* contradiction (n idpath).
- intros X1 X2 P Q.
cbn in *.
symmetry.
rewrite <- P.
rewrite <- Q.
Admitted.
Theorem union_isIn (X Y : FSet A) (a : A) : isIn a (U X Y) = orb (isIn a X) (isIn a Y).
Proof.
reflexivity.
Defined.
(* Properties about subset relation. *)
Lemma subset_union `{Funext} (X Y : FSet A) :
subset X Y = true -> U X Y = Y.
Proof.
hinduction X; try (intros; apply path_forall; intro; apply set_path2).
- intros. apply nl.
- intros a. hinduction Y;
try (intros; apply path_forall; intro; apply set_path2).
+ intro. contradiction (false_ne_true).
+ intros. destruct (dec (a = a0)).
rewrite p; apply idem.
contradiction (false_ne_true).
+ intros X1 X2 IH1 IH2.
intro Ho.
destruct (isIn a X1);
destruct (isIn a X2).
* specialize (IH1 idpath).
rewrite assoc. f_ap.
* specialize (IH1 idpath).
rewrite assoc. f_ap.
* specialize (IH2 idpath).
rewrite (comm X1 X2).
rewrite assoc. f_ap.
* contradiction (false_ne_true).
- intros X1 X2 IH1 IH2 G.
destruct (subset X1 Y);
destruct (subset X2 Y).
* specialize (IH1 idpath).
specialize (IH2 idpath).
rewrite <- assoc. rewrite IH2. apply IH1.
* contradiction (false_ne_true).
* contradiction (false_ne_true).
* contradiction (false_ne_true).
Defined.
Lemma eq1 (X Y : FSet A) : X = Y <~> (U Y X = X) * (U X Y = Y).
Proof.
unshelve eapply BuildEquiv.
{ intro H. rewrite H. split; apply union_idem. }
unshelve esplit.
{ intros [H1 H2]. etransitivity. apply H1^.
rewrite comm. apply H2. }
intro; apply path_prod; apply set_path2.
all: intro; apply set_path2.
Defined.
Lemma subset_union_l `{Funext} X :
forall Y, subset X (U X Y) = true.
hinduction X;
try (intros; apply path_forall; intro; apply set_path2).
- reflexivity.
- intros a Y. destruct (dec (a = a)).
* reflexivity.
* by contradiction n.
- intros X1 X2 HX1 HX2 Y.
enough (subset X1 (U (U X1 X2) Y) = true).
enough (subset X2 (U (U X1 X2) Y) = true).
rewrite X. rewrite X0. reflexivity.
{ rewrite (comm X1 X2).
rewrite <- (assoc X2 X1 Y).
apply (HX2 (U X1 Y)). }
{ rewrite <- (assoc X1 X2 Y). apply (HX1 (U X2 Y)). }
Defined.
Lemma subset_union_equiv `{Funext}
: forall X Y : FSet A, subset X Y = true <~> U X Y = Y.
Proof.
intros X Y.
unshelve eapply BuildEquiv.
apply subset_union.
unshelve esplit.
{ intros HXY. rewrite <- HXY. clear HXY.
apply subset_union_l. }
all: intro; apply set_path2.
Defined.
Lemma eq_subset `{Funext} (X Y : FSet A) :
X = Y <~> ((subset Y X = true) * (subset X Y = true)).
Proof.
transitivity ((U Y X = X) * (U X Y = Y)).
apply eq1.
symmetry.
eapply equiv_functor_prod'; apply subset_union_equiv.
Defined.
Lemma subset_isIn `{FE : Funext} (X Y : FSet A) :
(forall (a : A), isIn a X = true -> isIn a Y = true)
<-> (subset X Y = true).
Proof.
split.
- hinduction X ; try (intros ; apply path_forall ; intro ; apply set_path2).
* intros ; reflexivity.
* intros a H.
apply H.
destruct (dec (a = a)).
+ reflexivity.
+ contradiction (n idpath).
* intros X1 X2 H1 H2 H.
enough (subset X1 Y = true).
rewrite X.
enough (subset X2 Y = true).
rewrite X0.
reflexivity.
+ apply H2.
intros a Ha.
apply H.
rewrite Ha.
destruct (isIn a X1) ; reflexivity.
+ apply H1.
intros a Ha.
apply H.
rewrite Ha.
reflexivity.
- hinduction X .
* intros. contradiction (false_ne_true X0).
* intros b H a.
destruct (dec (a = b)).
+ intros ; rewrite p ; apply H.
+ intros X ; contradiction (false_ne_true X).
* intros X1 X2.
intros IH1 IH2 H1 a H2.
destruct (subset X1 Y) ; destruct (subset X2 Y);
cbv in H1; try by contradiction false_ne_true.
specialize (IH1 idpath a). specialize (IH2 idpath a).
destruct (isIn a X1); destruct (isIn a X2);
cbv in H2; try by contradiction false_ne_true.
by apply IH1.
by apply IH1.
by apply IH2.
* repeat (intro; intros; apply path_forall).
intros; intro; intros; apply set_path2.
* repeat (intro; intros; apply path_forall).
intros; intro; intros; apply set_path2.
* repeat (intro; intros; apply path_forall).
intros; intro; intros; apply set_path2.
* repeat (intro; intros; apply path_forall).
intros; intro; intros; apply set_path2.
* repeat (intro; intros; apply path_forall);
intros; intro; intros; apply set_path2.
Defined.
Lemma HPropEquiv (X Y : Type) (P : IsHProp X) (Q : IsHProp Y) :
(X <-> Y) -> (X <~> Y).
Proof.
intros [f g].
simple refine (BuildEquiv _ _ _ _).
apply f.
simple refine (BuildIsEquiv _ _ _ _ _ _ _).
- apply g.
- unfold Sect.
intro x.
apply Q.
- unfold Sect.
intro x.
apply P.
- intros.
apply set_path2.
Defined.
Theorem fset_ext `{Funext} (X Y : FSet A) :
X = Y <~> (forall (a : A), isIn a X = isIn a Y).
Proof.
etransitivity. apply eq_subset.
transitivity
((forall a, isIn a Y = true -> isIn a X = true)
*(forall a, isIn a X = true -> isIn a Y = true)).
- eapply equiv_functor_prod'.
apply HPropEquiv.
exact _.
exact _.
split ; apply subset_isIn.
apply HPropEquiv.
exact _.
exact _.
split ; apply subset_isIn.
- apply HPropEquiv.
exact _.
exact _.
split.
* intros [H1 H2 a].
specialize (H1 a) ; specialize (H2 a).
destruct (isIn a X).
+ symmetry ; apply (H2 idpath).
+ destruct (isIn a Y).
{ apply (H1 idpath). }
{ reflexivity. }
* intros H1.
split ; intro a ; intro H2.
+ rewrite (H1 a).
apply H2.
+ rewrite <- (H1 a).
apply H2.
Defined.
End properties.