mirror of https://github.com/nmvdw/HITs-Examples
91 lines
2.7 KiB
Coq
91 lines
2.7 KiB
Coq
(** We show that some operations on [FSet A] only exists when [A] has decidable equality. *)
|
||
Require Import HoTT.
|
||
Require Import FSets.
|
||
|
||
Section membership.
|
||
Context {A : Type} `{Univalence}.
|
||
|
||
Definition dec_membership
|
||
(H1 : forall (a : A) (X : FSet A), Decidable(a ∈ X))
|
||
: MerelyDecidablePaths A
|
||
:= fun a b => H1 a {|b|}.
|
||
End membership.
|
||
|
||
Section intersection.
|
||
Context {A : Type} `{Univalence}.
|
||
|
||
Variable (int : FSet A -> FSet A -> FSet A)
|
||
(int_member : forall (a : A) (X Y : FSet A),
|
||
a ∈ (int X Y) = BuildhProp(a ∈ X * a ∈ Y)).
|
||
|
||
Theorem dec_intersection : MerelyDecidablePaths A.
|
||
Proof.
|
||
intros a b.
|
||
destruct (merely_choice (int {|a|} {|b|})) as [p | p].
|
||
- refine (inr(fun X => _)).
|
||
strip_truncations.
|
||
refine (transport (fun z => a ∈ z) p _).
|
||
rewrite (int_member a {|a|} {|b|}), X.
|
||
split ; apply (tr idpath).
|
||
- left.
|
||
strip_truncations.
|
||
destruct p as [c p].
|
||
rewrite int_member in p.
|
||
destruct p as [p1 p2].
|
||
strip_truncations.
|
||
apply (tr(p1^ @ p2)).
|
||
Defined.
|
||
End intersection.
|
||
|
||
Section subset.
|
||
Context {A : Type} `{Univalence}.
|
||
|
||
Definition dec_subset
|
||
(H1 : forall (X Y : FSet A), Decidable(X ⊆ Y))
|
||
: MerelyDecidablePaths A
|
||
:= fun a b => H1 {|a|} {|b|}.
|
||
End subset.
|
||
|
||
Section decidable_equality.
|
||
Context {A : Type} `{Univalence}.
|
||
|
||
Definition dec_decidable_equality (H1 : DecidablePaths(FSet A))
|
||
: MerelyDecidablePaths A.
|
||
Proof.
|
||
intros a b.
|
||
destruct (H1 {|a|} {|b|}) as [p | n].
|
||
- pose (transport (fun z => a ∈ z) p) as t.
|
||
apply (inl (t (tr idpath))).
|
||
- refine (inr (fun p => _)).
|
||
strip_truncations.
|
||
apply (n (transport (fun z => {|z|} = {|b|}) p^ idpath)).
|
||
Defined.
|
||
End decidable_equality.
|
||
|
||
Section length.
|
||
Context {A : Type} `{Univalence}.
|
||
|
||
Variable (length : FSet A -> nat)
|
||
(length_singleton : forall (a : A), length {|a|} = 1)
|
||
(length_one : forall (X : FSet A), length X = 1 -> {a : A & X = {|a|}}).
|
||
|
||
Theorem dec_length (a b : A) : Decidable(merely(a = b)).
|
||
Proof.
|
||
destruct (dec (length ({|a|} ∪ {|b|}) = 1)).
|
||
- destruct (length_one _ p) as [c Xc].
|
||
refine (inl _).
|
||
assert (merely(a = c) * merely(b = c)).
|
||
{ split.
|
||
* pose (transport (fun z => a ∈ z) Xc) as t.
|
||
apply (t(tr(inl(tr idpath)))).
|
||
* pose (transport (fun z => b ∈ z) Xc) as t.
|
||
apply (t(tr(inr(tr idpath)))).
|
||
}
|
||
destruct X as [X1 X2] ; strip_truncations.
|
||
apply (tr (X1 @ X2^)).
|
||
- refine (inr(fun p => _)).
|
||
strip_truncations.
|
||
rewrite p, idem in n.
|
||
apply (n (length_singleton b)).
|
||
Defined.
|
||
End length. |