mirror of https://github.com/nmvdw/HITs-Examples
639 lines
17 KiB
Coq
639 lines
17 KiB
Coq
Require Import HoTT.
|
||
Require Export HoTT.
|
||
Require Import FunextAxiom.
|
||
|
||
Module Export FinSet.
|
||
|
||
Section FSet.
|
||
Variable A : Type.
|
||
|
||
Private Inductive FSet : Type :=
|
||
| E : FSet
|
||
| L : A -> FSet
|
||
| U : FSet -> FSet -> FSet.
|
||
|
||
Notation "{| x |}" := (L x).
|
||
Infix "∪" := U (at level 8, right associativity).
|
||
Notation "∅" := E.
|
||
|
||
Axiom assoc : forall (x y z : FSet ),
|
||
x ∪ (y ∪ z) = (x ∪ y) ∪ z.
|
||
|
||
Axiom comm : forall (x y : FSet),
|
||
x ∪ y = y ∪ x.
|
||
|
||
Axiom nl : forall (x : FSet),
|
||
∅ ∪ x = x.
|
||
|
||
Axiom nr : forall (x : FSet),
|
||
x ∪ ∅ = x.
|
||
|
||
Axiom idem : forall (x : A),
|
||
{| x |} ∪ {|x|} = {|x|}.
|
||
|
||
Axiom trunc : IsHSet FSet.
|
||
|
||
Fixpoint FSet_rec
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : FSet)
|
||
{struct x}
|
||
: P
|
||
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P with
|
||
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => e
|
||
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => l a
|
||
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => u
|
||
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
||
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
|
||
end) assocP commP nlP nrP idemP H.
|
||
|
||
Axiom FSet_rec_beta_assoc : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x y z : FSet),
|
||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (assoc x y z)
|
||
=
|
||
(assocP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
||
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
||
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_comm : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x y : FSet),
|
||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (comm x y)
|
||
=
|
||
(commP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
||
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_nl : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : FSet),
|
||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nl x)
|
||
=
|
||
(nlP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_nr : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : FSet),
|
||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nr x)
|
||
=
|
||
(nrP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_idem : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : A),
|
||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (idem x)
|
||
=
|
||
idemP x.
|
||
|
||
|
||
(* Induction principle *)
|
||
Fixpoint FSet_ind
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y: FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : FSet)
|
||
{struct x}
|
||
: P x
|
||
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
|
||
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => eP
|
||
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
|
||
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP z)
|
||
end) H assocP commP nlP nrP idemP.
|
||
|
||
|
||
Axiom FSet_ind_beta_assoc : forall
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y: FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x y z : FSet),
|
||
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP)
|
||
(assoc x y z)
|
||
=
|
||
(assocP x y z
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP z)
|
||
).
|
||
|
||
|
||
|
||
Axiom FSet_ind_beta_comm : forall
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x y : FSet),
|
||
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (comm x y)
|
||
=
|
||
(commP x y
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
|
||
).
|
||
|
||
Axiom FSet_ind_beta_nl : forall
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : FSet),
|
||
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nl x)
|
||
=
|
||
(nlP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_ind_beta_nr : forall
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : FSet),
|
||
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nr x)
|
||
=
|
||
(nrP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_ind_beta_idem : forall
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : A),
|
||
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (idem x)
|
||
=
|
||
idemP x.
|
||
|
||
End FSet.
|
||
|
||
Parameter A : Type.
|
||
Parameter A_eqdec : forall (x y : A), Decidable (x = y).
|
||
Definition deceq (x y : A) :=
|
||
if dec (x = y) then true else false.
|
||
|
||
Theorem deceq_sym : forall x y, deceq x y = deceq y x.
|
||
Proof.
|
||
intros x y.
|
||
unfold deceq.
|
||
destruct (dec (x = y)) ; destruct (dec (y = x)) ; cbn.
|
||
- reflexivity.
|
||
- pose (n (p^)) ; contradiction.
|
||
- pose (n (p^)) ; contradiction.
|
||
- reflexivity.
|
||
Defined.
|
||
|
||
Arguments E {_}.
|
||
Arguments U {_} _ _.
|
||
Arguments L {_} _.
|
||
|
||
Theorem idemU : forall x : FSet A, U x x = x.
|
||
Proof.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2) ; cbn.
|
||
- apply nl.
|
||
- apply idem.
|
||
- intros x y P Q.
|
||
etransitivity. apply assoc.
|
||
etransitivity. apply (ap (fun p => U (U p x) y) (comm A x y)).
|
||
etransitivity. apply (ap (fun p => U p y) (assoc A y x x))^.
|
||
etransitivity. apply (ap (fun p => U (U y p) y) P).
|
||
etransitivity. apply (ap (fun p => U p y) (comm A y x)).
|
||
etransitivity. apply (assoc A x y y)^.
|
||
apply (ap (fun p => U x p) Q).
|
||
Defined.
|
||
|
||
Definition isIn : A -> FSet A -> Bool.
|
||
Proof.
|
||
intros a.
|
||
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
|
||
- exact false.
|
||
- intro a'. apply (deceq a a').
|
||
- apply orb.
|
||
- intros x y z. destruct x; reflexivity.
|
||
- intros x y. destruct x, y; reflexivity.
|
||
- intros x. reflexivity.
|
||
- intros x. destruct x; reflexivity.
|
||
- intros a'. destruct (deceq a a'); reflexivity.
|
||
Defined.
|
||
|
||
Definition comprehension :
|
||
(A -> Bool) -> FSet A -> FSet A.
|
||
Proof.
|
||
intros P.
|
||
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
|
||
- apply E.
|
||
- intro a.
|
||
refine (if (P a) then L a else E).
|
||
- apply U.
|
||
- intros. apply assoc.
|
||
- intros. apply comm.
|
||
- intros. apply nl.
|
||
- intros. apply nr.
|
||
- intros. cbn.
|
||
destruct (P x).
|
||
+ apply idem.
|
||
+ apply nl.
|
||
Defined.
|
||
|
||
Theorem comprehension_or : forall ϕ ψ x,
|
||
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x) (comprehension ψ x).
|
||
Proof.
|
||
intros ϕ ψ.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
|
||
- cbn. symmetry ; apply nl.
|
||
- cbn. intros.
|
||
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
|
||
* apply idem.
|
||
* apply nr.
|
||
* apply nl.
|
||
* apply nl.
|
||
- simpl. intros x y P Q.
|
||
cbn.
|
||
rewrite P.
|
||
rewrite Q.
|
||
rewrite <- assoc.
|
||
rewrite (assoc A (comprehension ψ x)).
|
||
rewrite (comm A (comprehension ψ x) (comprehension ϕ y)).
|
||
rewrite <- assoc.
|
||
rewrite <- assoc.
|
||
reflexivity.
|
||
Defined.
|
||
|
||
Definition intersection (X Y : FSet A) : FSet A := comprehension (fun (a : A) => isIn a X) Y.
|
||
|
||
Theorem intersection_idem : forall x, intersection x x = x.
|
||
Proof.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2) ; cbn.
|
||
- reflexivity.
|
||
- intro a.
|
||
unfold deceq.
|
||
destruct (dec (a = a)).
|
||
* reflexivity.
|
||
* pose (n idpath) ; contradiction.
|
||
- intros x y P Q.
|
||
rewrite comprehension_or.
|
||
rewrite comprehension_or.
|
||
unfold intersection in P.
|
||
unfold intersection in Q.
|
||
rewrite P.
|
||
rewrite Q.
|
||
Admitted.
|
||
|
||
|
||
|
||
|
||
Theorem intersection_EX : forall x,
|
||
intersection E x = E.
|
||
Proof.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
|
||
- reflexivity.
|
||
- intro a.
|
||
reflexivity.
|
||
- unfold intersection.
|
||
intros x y P Q.
|
||
cbn.
|
||
rewrite P.
|
||
rewrite Q.
|
||
apply nl.
|
||
Defined.
|
||
|
||
Definition intersection_XE x : intersection x E = E := idpath.
|
||
|
||
Theorem intersection_La : forall a x,
|
||
intersection (L a) x = if isIn a x then L a else E.
|
||
Proof.
|
||
intro a.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
|
||
- reflexivity.
|
||
- intro b.
|
||
cbn.
|
||
rewrite deceq_sym.
|
||
unfold deceq.
|
||
destruct (dec (a = b)).
|
||
* rewrite p ; reflexivity.
|
||
* reflexivity.
|
||
- unfold intersection.
|
||
intros x y P Q.
|
||
cbn.
|
||
rewrite P.
|
||
rewrite Q.
|
||
destruct (isIn a x) ; destruct (isIn a y).
|
||
* apply idem.
|
||
* apply nr.
|
||
* apply nl.
|
||
* apply nl.
|
||
Defined.
|
||
|
||
|
||
(*
|
||
Theorem intersection_comm : forall x y,
|
||
intersection x y = intersection y x.
|
||
Proof.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
|
||
- intros.
|
||
rewrite intersection_E.
|
||
reflexivity.
|
||
- intros a.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
|
||
* reflexivity.
|
||
* intro b.
|
||
admit.
|
||
* intros x y.
|
||
destruct (isIn a x) ; destruct (isIn a y) ; intros P Q.
|
||
+ rewrite P.
|
||
*)
|
||
|
||
|
||
Theorem comp_false : forall x,
|
||
comprehension (fun _ => false) x = E.
|
||
Proof.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2) ; cbn.
|
||
- reflexivity.
|
||
- intro a ; reflexivity.
|
||
- intros x y P Q.
|
||
rewrite P.
|
||
rewrite Q.
|
||
apply nl.
|
||
Defined.
|
||
|
||
(*Theorem union_dist : forall x y z,
|
||
intersection z (U x y) = U (intersection z x) (intersection z y).
|
||
Proof.
|
||
intros x y.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
|
||
- rewrite intersection_E.
|
||
rewrite intersection_E.
|
||
rewrite comp_false.
|
||
rewrite comp_false.
|
||
reflexivity.
|
||
- intro a.
|
||
*)
|
||
|
||
Theorem union_dist : forall x y z,
|
||
intersection (U x y) z = U (intersection x z) (intersection y z).
|
||
Proof.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
|
||
- intros.
|
||
rewrite nl.
|
||
rewrite intersection_EX.
|
||
rewrite nl.
|
||
reflexivity.
|
||
- intro a.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
|
||
* intros.
|
||
rewrite nr.
|
||
rewrite intersection_EX.
|
||
rewrite nr.
|
||
reflexivity.
|
||
* intros b.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
|
||
+ rewrite nl. reflexivity.
|
||
+ intros c.
|
||
unfold deceq.
|
||
destruct (dec (c = a)) ; destruct (dec (c = b)) ; cbn.
|
||
{ rewrite idem. reflexivity. }
|
||
{ rewrite nr. reflexivity. }
|
||
{ rewrite nl. reflexivity. }
|
||
{ rewrite nl. reflexivity. }
|
||
+ intros x y P Q.
|
||
rewrite comprehension_or.
|
||
rewrite comprehension_or.
|
||
rewrite assoc.
|
||
rewrite <- (assoc A (comprehension (fun a0 : A => deceq a0 a) x) (comprehension (fun a0 : A => deceq a0 b) x)).
|
||
rewrite (comm A (comprehension (fun a0 : A => deceq a0 b) x) (comprehension (fun a0 : A => deceq a0 a) y)).
|
||
rewrite assoc.
|
||
rewrite <- assoc.
|
||
reflexivity.
|
||
+ admit.
|
||
+ admit.
|
||
+ admit.
|
||
+ admit.
|
||
+ admit.
|
||
* intros x y P Q z.
|
||
cbn.
|
||
|
||
Admitted.
|
||
|
||
Theorem intersection_isIn : forall a x y,
|
||
isIn a (intersection x y) = andb (isIn a x) (isIn a y).
|
||
Proof.
|
||
intros a.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
|
||
- intros y.
|
||
rewrite intersection_EX.
|
||
reflexivity.
|
||
- intros b y.
|
||
rewrite intersection_La.
|
||
unfold deceq.
|
||
destruct (dec (a = b)) ; cbn.
|
||
* rewrite p.
|
||
destruct (isIn b y).
|
||
+ cbn.
|
||
unfold deceq.
|
||
destruct (dec (b = b)).
|
||
{ reflexivity. }
|
||
{ pose (n idpath). contradiction. }
|
||
+ reflexivity.
|
||
* destruct (isIn b y).
|
||
+ cbn.
|
||
unfold deceq.
|
||
destruct (dec (a = b)).
|
||
{ pose (n p). contradiction. }
|
||
{ reflexivity. }
|
||
+ reflexivity.
|
||
- intros x y P Q z.
|
||
rewrite union_dist.
|
||
cbn.
|
||
rewrite P.
|
||
rewrite Q.
|
||
destruct (isIn a x) ; destruct (isIn a y) ; destruct (isIn a z) ; reflexivity.
|
||
Admitted.
|
||
|
||
Theorem intersection_assoc x y z :
|
||
intersection x (intersection y z) = intersection (intersection x y) z.
|
||
Proof.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _ x) ; cbn ; try (intros ; apply set_path2).
|
||
- intros.
|
||
exact _.
|
||
- cbn.
|
||
rewrite intersection_E.
|
||
rewrite intersection_E.
|
||
rewrite intersection_E.
|
||
reflexivity.
|
||
- intros a y z.
|
||
cbn.
|
||
rewrite intersection_La.
|
||
rewrite intersection_La.
|
||
rewrite intersection_isIn.
|
||
destruct (isIn a y).
|
||
* rewrite intersection_La.
|
||
destruct (isIn a z).
|
||
+ reflexivity.
|
||
+ reflexivity.
|
||
* rewrite intersection_E.
|
||
reflexivity.
|
||
- unfold intersection. cbn.
|
||
intros x y P Q z z'.
|
||
rewrite comprehension_or.
|
||
rewrite P.
|
||
rewrite Q.
|
||
rewrite comprehension_or.
|
||
cbn.
|
||
rewrite comprehension_or.
|
||
reflexivity.
|
||
Admitted.
|