mirror of https://github.com/nmvdw/HITs-Examples
300 lines
8.7 KiB
Coq
300 lines
8.7 KiB
Coq
Require Import HoTT HitTactics.
|
||
From fsets Require Import operations extensionality.
|
||
Require Export representations.definition disjunction.
|
||
Require Import lattice.
|
||
|
||
(* Lemmas relating operations to the membership predicate *)
|
||
Section characterize_isIn.
|
||
Context {A : Type}.
|
||
Context `{Univalence}.
|
||
|
||
(** isIn properties *)
|
||
Definition empty_isIn (a: A) : a ∈ ∅ -> Empty := idmap.
|
||
|
||
Definition singleton_isIn (a b: A) : a ∈ {|b|} -> Trunc (-1) (a = b) := idmap.
|
||
|
||
Definition union_isIn (X Y : FSet A) (a : A)
|
||
: a ∈ X ∪ Y = a ∈ X ∨ a ∈ Y := idpath.
|
||
|
||
Lemma comprehension_union (ϕ : A -> Bool) : forall X Y : FSet A,
|
||
{|X ∪ Y & ϕ|} = {|X & ϕ|} ∪ {|Y & ϕ|}.
|
||
Proof.
|
||
reflexivity.
|
||
Defined.
|
||
|
||
Lemma comprehension_isIn (ϕ : A -> Bool) (a : A) : forall X : FSet A,
|
||
a ∈ {|X & ϕ|} = if ϕ a then a ∈ X else False_hp.
|
||
Proof.
|
||
hinduction ; try (intros ; apply set_path2).
|
||
- destruct (ϕ a) ; reflexivity.
|
||
- intros b.
|
||
assert (forall c d, ϕ a = c -> ϕ b = d ->
|
||
a ∈ (if ϕ b then {|b|} else ∅)
|
||
=
|
||
(if ϕ a then BuildhProp (Trunc (-1) (a = b)) else False_hp)) as X.
|
||
{
|
||
intros c d Hc Hd.
|
||
destruct c ; destruct d ; rewrite Hc, Hd ; try reflexivity
|
||
; apply path_iff_hprop ; try contradiction ; intros ; strip_truncations
|
||
; apply (false_ne_true).
|
||
* apply (Hd^ @ ap ϕ X^ @ Hc).
|
||
* apply (Hc^ @ ap ϕ X @ Hd).
|
||
}
|
||
apply (X (ϕ a) (ϕ b) idpath idpath).
|
||
- intros X Y H1 H2.
|
||
rewrite comprehension_union.
|
||
rewrite union_isIn.
|
||
rewrite H1, H2.
|
||
destruct (ϕ a).
|
||
* reflexivity.
|
||
* apply path_iff_hprop.
|
||
** intros Z ; strip_truncations.
|
||
destruct Z ; assumption.
|
||
** intros ; apply tr ; right ; assumption.
|
||
Defined.
|
||
End characterize_isIn.
|
||
|
||
Section product_isIn.
|
||
Context {A B : Type}.
|
||
Context `{Univalence}.
|
||
|
||
Lemma isIn_singleproduct (a : A) (b : B) (c : A) : forall (Y : FSet B),
|
||
(a, b) ∈ (single_product c Y) = land (BuildhProp (Trunc (-1) (a = c))) (b ∈ Y).
|
||
Proof.
|
||
hinduction ; try (intros ; apply path_ishprop).
|
||
- apply path_hprop ; symmetry ; apply prod_empty_r.
|
||
- intros d.
|
||
apply path_iff_hprop.
|
||
* intros.
|
||
strip_truncations.
|
||
split ; apply tr ; try (apply (ap fst X)) ; try (apply (ap snd X)).
|
||
* intros [Z1 Z2].
|
||
strip_truncations.
|
||
rewrite Z1, Z2.
|
||
apply (tr idpath).
|
||
- intros X1 X2 HX1 HX2.
|
||
apply path_iff_hprop ; rewrite ?union_isIn.
|
||
* intros X.
|
||
strip_truncations.
|
||
destruct X as [H1 | H1] ; rewrite ?HX1, ?HX2 in H1 ; destruct H1 as [H1 H2].
|
||
** split.
|
||
*** apply H1.
|
||
*** apply (tr(inl H2)).
|
||
** split.
|
||
*** apply H1.
|
||
*** apply (tr(inr H2)).
|
||
* intros [H1 H2].
|
||
strip_truncations.
|
||
apply tr.
|
||
rewrite HX1, HX2.
|
||
destruct H2 as [Hb1 | Hb2].
|
||
** left.
|
||
split ; try (apply (tr H1)) ; try (apply Hb1).
|
||
** right.
|
||
split ; try (apply (tr H1)) ; try (apply Hb2).
|
||
Defined.
|
||
|
||
Definition isIn_product (a : A) (b : B) (X : FSet A) (Y : FSet B) :
|
||
(a,b) ∈ (product X Y) = land (a ∈ X) (b ∈ Y).
|
||
Proof.
|
||
hinduction X ; try (intros ; apply path_ishprop).
|
||
- apply path_hprop ; symmetry ; apply prod_empty_l.
|
||
- intros.
|
||
apply isIn_singleproduct.
|
||
- intros X1 X2 HX1 HX2.
|
||
rewrite (union_isIn (product X1 Y)).
|
||
rewrite HX1, HX2.
|
||
apply path_iff_hprop ; rewrite ?union_isIn.
|
||
* intros X.
|
||
strip_truncations.
|
||
destruct X as [[H3 H4] | [H3 H4]] ; split ; try (apply H4).
|
||
** apply (tr(inl H3)).
|
||
** apply (tr(inr H3)).
|
||
* intros [H1 H2].
|
||
strip_truncations.
|
||
destruct H1 as [H1 | H1] ; apply tr.
|
||
** left ; split ; assumption.
|
||
** right ; split ; assumption.
|
||
Defined.
|
||
End product_isIn.
|
||
|
||
Ltac simplify_isIn :=
|
||
repeat (rewrite union_isIn
|
||
|| rewrite comprehension_isIn).
|
||
|
||
Ltac toHProp :=
|
||
repeat intro;
|
||
apply fset_ext ; intros ;
|
||
simplify_isIn ; eauto with lattice_hints typeclass_instances.
|
||
|
||
(* Other properties *)
|
||
Section properties.
|
||
Context {A : Type}.
|
||
Context `{Univalence}.
|
||
|
||
Instance: bottom(FSet A).
|
||
Proof.
|
||
unfold bottom.
|
||
apply ∅.
|
||
Defined.
|
||
|
||
Instance: maximum(FSet A).
|
||
Proof.
|
||
intros x y.
|
||
apply (x ∪ y).
|
||
Defined.
|
||
|
||
Global Instance joinsemilattice_fset : JoinSemiLattice (FSet A).
|
||
Proof.
|
||
split ; toHProp.
|
||
Defined.
|
||
|
||
(** comprehension properties *)
|
||
Lemma comprehension_false : forall (X : FSet A), {|X & fun _ => false|} = ∅.
|
||
Proof.
|
||
toHProp.
|
||
Defined.
|
||
|
||
Lemma comprehension_subset : forall ϕ (X : FSet A),
|
||
{|X & ϕ|} ∪ X = X.
|
||
Proof.
|
||
toHProp.
|
||
destruct (ϕ a) ; eauto with lattice_hints typeclass_instances.
|
||
Defined.
|
||
|
||
Lemma comprehension_or : forall ϕ ψ (X : FSet A),
|
||
{|X & (fun a => orb (ϕ a) (ψ a))|}
|
||
= {|X & ϕ|} ∪ {|X & ψ|}.
|
||
Proof.
|
||
toHProp.
|
||
symmetry ; destruct (ϕ a) ; destruct (ψ a)
|
||
; eauto with lattice_hints typeclass_instances.
|
||
Defined.
|
||
|
||
Lemma comprehension_all : forall (X : FSet A),
|
||
{|X & fun _ => true|} = X.
|
||
Proof.
|
||
toHProp.
|
||
Defined.
|
||
|
||
Lemma merely_choice : forall X : FSet A, hor (X = ∅) (hexists (fun a => a ∈ X)).
|
||
Proof.
|
||
hinduction; try (intros; apply equiv_hprop_allpath ; apply _).
|
||
- apply (tr (inl idpath)).
|
||
- intro a.
|
||
refine (tr (inr (tr (a ; tr idpath)))).
|
||
- intros X Y TX TY.
|
||
strip_truncations.
|
||
destruct TX as [XE | HX] ; destruct TY as [YE | HY] ; try(strip_truncations ; apply tr).
|
||
* refine (tr (inl _)).
|
||
rewrite XE, YE.
|
||
apply (union_idem ∅).
|
||
* destruct HY as [a Ya].
|
||
refine (inr (tr _)).
|
||
exists a.
|
||
apply (tr (inr Ya)).
|
||
* destruct HX as [a Xa].
|
||
refine (inr (tr _)).
|
||
exists a.
|
||
apply (tr (inl Xa)).
|
||
* destruct (HX, HY) as [[a Xa] [b Yb]].
|
||
refine (inr (tr _)).
|
||
exists a.
|
||
apply (tr (inl Xa)).
|
||
Defined.
|
||
|
||
Lemma separation_isIn (B : Type) : forall (X : FSet A) (f : {a | a ∈ X} -> B) (b : B),
|
||
b ∈ (separation A B X f) = hexists (fun a : A => hexists (fun (p : a ∈ X) => f (a;p) = b)).
|
||
Proof.
|
||
hinduction ; try (intros ; apply path_forall ; intro ; apply path_ishprop).
|
||
- intros ; simpl.
|
||
apply path_iff_hprop ; try contradiction.
|
||
intros X.
|
||
strip_truncations.
|
||
destruct X as [a X].
|
||
strip_truncations.
|
||
destruct X as [p X].
|
||
assumption.
|
||
- intros.
|
||
apply path_iff_hprop ; simpl.
|
||
* intros ; strip_truncations.
|
||
apply tr.
|
||
exists a.
|
||
apply tr.
|
||
exists (tr idpath).
|
||
apply X^.
|
||
* intros X ; strip_truncations.
|
||
destruct X as [a0 X].
|
||
strip_truncations.
|
||
destruct X as [X q].
|
||
simple refine (Trunc_ind _ _ X).
|
||
intros p.
|
||
apply tr.
|
||
rewrite <- q.
|
||
f_ap.
|
||
simple refine (path_sigma _ _ _ _ _).
|
||
** apply p.
|
||
** apply path_ishprop.
|
||
- intros X1 X2 HX1 HX2 f b.
|
||
pose (fX1 := fun Z : {a : A & a ∈ X1} => f (pr1 Z;tr (inl (pr2 Z)))).
|
||
pose (fX2 := fun Z : {a : A & a ∈ X2} => f (pr1 Z;tr (inr (pr2 Z)))).
|
||
specialize (HX1 fX1 b).
|
||
specialize (HX2 fX2 b).
|
||
apply path_iff_hprop.
|
||
* intros X.
|
||
rewrite union_isIn in X.
|
||
strip_truncations.
|
||
destruct X as [X | X].
|
||
** rewrite HX1 in X.
|
||
strip_truncations.
|
||
destruct X as [a Ha].
|
||
apply tr.
|
||
exists a.
|
||
strip_truncations.
|
||
destruct Ha as [p pa].
|
||
apply tr.
|
||
exists (tr(inl p)).
|
||
rewrite <- pa.
|
||
reflexivity.
|
||
** rewrite HX2 in X.
|
||
strip_truncations.
|
||
destruct X as [a Ha].
|
||
apply tr.
|
||
exists a.
|
||
strip_truncations.
|
||
destruct Ha as [p pa].
|
||
apply tr.
|
||
exists (tr(inr p)).
|
||
rewrite <- pa.
|
||
reflexivity.
|
||
* intros.
|
||
strip_truncations.
|
||
destruct X as [a X].
|
||
strip_truncations.
|
||
destruct X as [Ha p].
|
||
rewrite union_isIn.
|
||
simple refine (Trunc_ind _ _ Ha) ; intros [Ha1 | Ha2].
|
||
** refine (tr(inl _)).
|
||
rewrite HX1.
|
||
apply tr.
|
||
exists a.
|
||
apply tr.
|
||
exists Ha1.
|
||
rewrite <- p.
|
||
unfold fX1.
|
||
repeat f_ap.
|
||
apply path_ishprop.
|
||
** refine (tr(inr _)).
|
||
rewrite HX2.
|
||
apply tr.
|
||
exists a.
|
||
apply tr.
|
||
exists Ha2.
|
||
rewrite <- p.
|
||
unfold fX2.
|
||
repeat f_ap.
|
||
apply path_ishprop.
|
||
Defined.
|
||
|
||
End properties.
|