mirror of https://github.com/nmvdw/HITs-Examples
167 lines
4.9 KiB
Coq
167 lines
4.9 KiB
Coq
(** Definitions of the Kuratowski-finite sets via a HIT.
|
||
We do not need the computation rules in the development, so they are not present here.
|
||
*)
|
||
Require Import HoTT HitTactics.
|
||
Require Export set_names lattice_examples.
|
||
|
||
Module Export FSet.
|
||
Section FSet.
|
||
Private Inductive FSet (A : Type) : Type :=
|
||
| E : FSet A
|
||
| L : A -> FSet A
|
||
| U : FSet A -> FSet A -> FSet A.
|
||
|
||
Global Instance fset_empty : forall A, hasEmpty (FSet A) := E.
|
||
Global Instance fset_singleton : forall A, hasSingleton (FSet A) A := L.
|
||
Global Instance fset_union : forall A, hasUnion (FSet A) := U.
|
||
|
||
Variable A : Type.
|
||
|
||
Axiom assoc : forall (x y z : FSet A),
|
||
x ∪ (y ∪ z) = (x ∪ y) ∪ z.
|
||
|
||
Axiom comm : forall (x y : FSet A),
|
||
x ∪ y = y ∪ x.
|
||
|
||
Axiom nl : forall (x : FSet A),
|
||
∅ ∪ x = x.
|
||
|
||
Axiom nr : forall (x : FSet A),
|
||
x ∪ ∅ = x.
|
||
|
||
Axiom idem : forall (x : A),
|
||
{|x|} ∪ {|x|} = {|x|}.
|
||
|
||
Axiom trunc : IsHSet (FSet A).
|
||
|
||
End FSet.
|
||
|
||
Arguments assoc {_} _ _ _.
|
||
Arguments comm {_} _ _.
|
||
Arguments nl {_} _.
|
||
Arguments nr {_} _.
|
||
Arguments idem {_} _.
|
||
|
||
Section FSet_induction.
|
||
Variable (A : Type)
|
||
(P : FSet A -> Type)
|
||
(H : forall X : FSet A, IsHSet (P X))
|
||
(eP : P ∅)
|
||
(lP : forall a: A, P {|a|})
|
||
(uP : forall (x y: FSet A), P x -> P y -> P (x ∪ y))
|
||
(assocP : forall (x y z : FSet A)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (y ∪ z) px (uP y z py pz))
|
||
=
|
||
(uP (x ∪ y) z (uP x y px py) pz))
|
||
(commP : forall (x y: FSet A) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet A) (px: P x),
|
||
nl x # uP ∅ x eP px = px)
|
||
(nrP : forall (x : FSet A) (px: P x),
|
||
nr x # uP x ∅ px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP {|x|} {|x|} (lP x) (lP x) = lP x).
|
||
|
||
(* Induction principle *)
|
||
Fixpoint FSet_ind
|
||
(x : FSet A)
|
||
{struct x}
|
||
: P x
|
||
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
|
||
| E => fun _ _ _ _ _ _ => eP
|
||
| L a => fun _ _ _ _ _ _ => lP a
|
||
| U y z => fun _ _ _ _ _ _ => uP y z (FSet_ind y) (FSet_ind z)
|
||
end) H assocP commP nlP nrP idemP.
|
||
End FSet_induction.
|
||
|
||
Section FSet_recursion.
|
||
Variable (A : Type)
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x).
|
||
|
||
(* Recursion princople *)
|
||
Definition FSet_rec : FSet A -> P.
|
||
Proof.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _)
|
||
; try (intros ; simple refine ((transport_const _ _) @ _)) ; cbn.
|
||
- apply e.
|
||
- apply l.
|
||
- intros x y ; apply u.
|
||
- apply assocP.
|
||
- apply commP.
|
||
- apply nlP.
|
||
- apply nrP.
|
||
- apply idemP.
|
||
Defined.
|
||
End FSet_recursion.
|
||
|
||
Instance FSet_recursion A : HitRecursion (FSet A) :=
|
||
{
|
||
indTy := _; recTy := _;
|
||
H_inductor := FSet_ind A; H_recursor := FSet_rec A
|
||
}.
|
||
End FSet.
|
||
|
||
Lemma union_idem {A : Type} : forall x: FSet A, x ∪ x = x.
|
||
Proof.
|
||
hinduction ; try (intros ; apply set_path2).
|
||
- apply nl.
|
||
- apply idem.
|
||
- intros x y P Q.
|
||
rewrite assoc.
|
||
rewrite (comm x y).
|
||
rewrite <- (assoc y x x).
|
||
rewrite P.
|
||
rewrite (comm y x).
|
||
rewrite <- (assoc x y y).
|
||
apply (ap (x ∪) Q).
|
||
Defined.
|
||
|
||
Section relations.
|
||
Context `{Univalence}.
|
||
|
||
(** Membership of finite sets. *)
|
||
Global Instance fset_member : forall A, hasMembership (FSet A) A.
|
||
Proof.
|
||
intros A a.
|
||
hrecursion.
|
||
- apply False_hp.
|
||
- apply (fun a' => merely(a = a')).
|
||
- apply lor.
|
||
- eauto with lattice_hints typeclass_instances.
|
||
- eauto with lattice_hints typeclass_instances.
|
||
- eauto with lattice_hints typeclass_instances.
|
||
- eauto with lattice_hints typeclass_instances.
|
||
- eauto with lattice_hints typeclass_instances.
|
||
Defined.
|
||
|
||
(** Subset relation of finite sets. *)
|
||
Global Instance fset_subset : forall A, hasSubset (FSet A).
|
||
Proof.
|
||
intros A X Y.
|
||
hrecursion X.
|
||
- apply Unit_hp.
|
||
- apply (fun a => a ∈ Y).
|
||
- intros X1 X2.
|
||
exists (prod X1 X2).
|
||
exact _.
|
||
- eauto with lattice_hints typeclass_instances.
|
||
- eauto with lattice_hints typeclass_instances.
|
||
- intros.
|
||
apply path_trunctype ; apply prod_unit_l.
|
||
- intros.
|
||
apply path_trunctype ; apply prod_unit_r.
|
||
- eauto with lattice_hints typeclass_instances.
|
||
Defined.
|
||
End relations. |