HITs-Examples/FiniteSets/prelude.v

64 lines
1.7 KiB
Coq

(** Some general prerequisities in homotopy type theory. *)
Require Import HoTT.
Lemma ap_inl_path_sum_inl {A B} (x y : A) (p : inl x = inl y) :
ap inl (path_sum_inl B p) = p.
Proof.
transitivity (@path_sum _ B (inl x) (inl y) (path_sum_inl B p));
[ | apply (eisretr_path_sum _) ].
destruct (path_sum_inl B p).
reflexivity.
Defined.
Lemma ap_equiv {A B} (f : A <~> B) {x y : A} (p : x = y) :
ap (f^-1 o f) p = eissect f x @ p @ (eissect f y)^.
Proof.
destruct p.
hott_simpl.
Defined.
Global Instance hprop_lem `{Univalence} (T : Type) (Ttrunc : IsHProp T) : IsHProp (T + ~T).
Proof.
apply (equiv_hprop_allpath _)^-1.
intros [x | nx] [y | ny] ; try f_ap ; try (apply Ttrunc) ; try contradiction.
- apply equiv_hprop_allpath. apply _.
Defined.
Class MerelyDecidablePaths A :=
m_dec_path : forall (a b : A), Decidable(Trunc (-1) (a = b)).
Global Instance DecidableToMerely A (H : DecidablePaths A) : MerelyDecidablePaths A.
Proof.
intros x y.
destruct (dec (x = y)).
- apply (inl(tr p)).
- refine (inr(fun p => _)).
strip_truncations.
apply (n p).
Defined.
Global Instance merely_decidable_paths_prod (A B : Type)
`{MerelyDecidablePaths A} `{MerelyDecidablePaths B}
: MerelyDecidablePaths(A * B).
Proof.
intros x y.
destruct (m_dec_path (fst x) (fst y)) as [p1 | n1],
(m_dec_path (snd x) (snd y)) as [p2 | n2].
- apply inl.
strip_truncations.
apply tr.
apply path_prod ; assumption.
- apply inr.
intros pp.
strip_truncations.
apply (n2 (tr (ap snd pp))).
- apply inr.
intros pp.
strip_truncations.
apply (n1 (tr (ap fst pp))).
- apply inr.
intros pp.
strip_truncations.
apply (n1 (tr (ap fst pp))).
Defined.