mirror of https://github.com/nmvdw/HITs-Examples
169 lines
5.1 KiB
Coq
169 lines
5.1 KiB
Coq
(** The representations [FSet A] and [FSetC A] are isomorphic for every A *)
|
||
Require Import HoTT HitTactics.
|
||
Require Import list_representation list_representation.operations
|
||
list_representation.properties.
|
||
Require Import kuratowski.kuratowski_sets.
|
||
|
||
Section Iso.
|
||
Context {A : Type}.
|
||
|
||
Definition FSetC_to_FSet: FSetC A -> FSet A.
|
||
Proof.
|
||
hrecursion.
|
||
- apply ∅.
|
||
- intros a x.
|
||
apply ({|a|} ∪ x).
|
||
- intros a X.
|
||
apply (assoc _ _ _ @ ap (∪ X) (idem _)).
|
||
- intros a X Y.
|
||
apply (assoc _ _ _ @ ap (∪ Y) (comm _ _) @ (assoc _ _ _)^).
|
||
Defined.
|
||
|
||
Definition FSet_to_FSetC: FSet A -> FSetC A.
|
||
Proof.
|
||
hrecursion.
|
||
- apply ∅.
|
||
- apply (fun a => {|a|}).
|
||
- apply (∪).
|
||
- apply append_assoc.
|
||
- apply append_comm.
|
||
- apply append_nl.
|
||
- apply append_nr.
|
||
- apply singleton_idem.
|
||
Defined.
|
||
|
||
Lemma append_union: forall (x y: FSetC A),
|
||
FSetC_to_FSet (x ∪ y) = (FSetC_to_FSet x) ∪ (FSetC_to_FSet y).
|
||
Proof.
|
||
intros x y.
|
||
hrecursion x ; try (intros ; apply path_ishprop).
|
||
- intros.
|
||
apply (nl _)^.
|
||
- intros a x HR.
|
||
refine (ap ({|a|} ∪) HR @ assoc _ _ _).
|
||
Defined.
|
||
|
||
Lemma repr_iso_id_l: forall (x: FSet A), FSetC_to_FSet (FSet_to_FSetC x) = x.
|
||
Proof.
|
||
hinduction ; try (intros ; apply path_ishprop).
|
||
- reflexivity.
|
||
- intro.
|
||
apply nr.
|
||
- intros x y p q.
|
||
refine (append_union _ _ @ _).
|
||
refine (ap (∪ _) p @ _).
|
||
apply (ap (_ ∪) q).
|
||
Defined.
|
||
|
||
Lemma repr_iso_id_r: forall (x: FSetC A), FSet_to_FSetC (FSetC_to_FSet x) = x.
|
||
Proof.
|
||
hinduction ; try (intros ; apply path_ishprop).
|
||
- reflexivity.
|
||
- intros a x HR.
|
||
refine (ap ({|a|} ∪) HR).
|
||
Defined.
|
||
|
||
Global Instance: IsEquiv FSet_to_FSetC.
|
||
Proof.
|
||
apply isequiv_biinv.
|
||
split.
|
||
exists FSetC_to_FSet.
|
||
unfold Sect. apply repr_iso_id_l.
|
||
exists FSetC_to_FSet.
|
||
unfold Sect. apply repr_iso_id_r.
|
||
Defined.
|
||
|
||
Global Instance: IsEquiv FSetC_to_FSet.
|
||
Proof.
|
||
change (IsEquiv (FSet_to_FSetC)^-1).
|
||
apply isequiv_inverse.
|
||
Defined.
|
||
|
||
Theorem repr_iso: FSet A <~> FSetC A.
|
||
Proof.
|
||
simple refine (@BuildEquiv (FSet A) (FSetC A) FSet_to_FSetC _ ).
|
||
Defined.
|
||
|
||
Theorem fset_fsetc `{Univalence} : FSet A = FSetC A.
|
||
Proof.
|
||
apply (equiv_path _ _)^-1.
|
||
exact repr_iso.
|
||
Defined.
|
||
|
||
Definition dupl' (a : A) (X : FSet A) : {|a|} ∪ {|a|} ∪ X = {|a|} ∪ X
|
||
:= assoc _ _ _ @ ap (∪ X) (idem a).
|
||
|
||
Definition comm' (a b : A) (X : FSet A) : {|a|} ∪ {|b|} ∪ X = {|b|} ∪ {|a|} ∪ X
|
||
:= assoc _ _ _ @ ap (∪ X) (comm _ _) @ (assoc _ _ _)^.
|
||
|
||
Theorem FSet_cons_ind (P : FSet A -> Type)
|
||
(Pset : forall (X : FSet A), IsHSet (P X))
|
||
(Pempt : P ∅)
|
||
(Pcons : forall (a : A) (X : FSet A), P X -> P ({|a|} ∪ X))
|
||
(Pdupl : forall (a : A) (X : FSet A) (px : P X),
|
||
transport P (dupl' a X) (Pcons a _ (Pcons a X px)) = Pcons a X px)
|
||
(Pcomm : forall (a b : A) (X : FSet A) (px : P X),
|
||
transport P (comm' a b X) (Pcons a _ (Pcons b X px)) = Pcons b _ (Pcons a X px))
|
||
(X : FSet A)
|
||
: P X.
|
||
Proof.
|
||
refine (transport P (repr_iso_id_l X) _).
|
||
simple refine (FSetC_ind A (fun Z => P (FSetC_to_FSet Z)) _ _ _ _ _ (FSet_to_FSetC X))
|
||
; simpl.
|
||
- apply Pempt.
|
||
- intros a Y HY.
|
||
apply (Pcons a _ HY).
|
||
- intros a Y PY.
|
||
refine (_ @ (Pdupl _ _ _)).
|
||
refine (transport_compose _ FSetC_to_FSet (dupl a Y) _ @ _).
|
||
refine (ap (fun z => transport P z _) _).
|
||
apply path_ishprop.
|
||
- intros a b Y PY.
|
||
refine (transport_compose _ FSetC_to_FSet (comm_s a b Y) _ @ _ @ (Pcomm _ _ _ _)).
|
||
refine (ap (fun z => transport P z _) _).
|
||
apply path_ishprop.
|
||
Defined.
|
||
|
||
(*
|
||
Theorem FSet_cons_ind_beta_empty (P : FSet A -> Type)
|
||
(Pset : forall (X : FSet A), IsHSet (P X))
|
||
(Pempt : P ∅)
|
||
(Pcons : forall (a : A) (X : FSet A), P X -> P ({|a|} ∪ X))
|
||
(Pdupl : forall (a : A) (X : FSet A) (px : P X),
|
||
transport P (dupl' a X) (Pcons a _ (Pcons a X px)) = Pcons a X px)
|
||
(Pcomm : forall (a b : A) (X : FSet A) (px : P X),
|
||
transport P (comm' a b X) (Pcons a _ (Pcons b X px)) = Pcons b _ (Pcons a X px)) :
|
||
FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm ∅ = Pempt.
|
||
Proof.
|
||
by compute.
|
||
Defined.
|
||
|
||
|
||
Theorem FSet_cons_ind_beta_cons (P : FSet A -> Type)
|
||
(Pset : forall (X : FSet A), IsHSet (P X))
|
||
(Pempt : P ∅)
|
||
(Pcons : forall (a : A) (X : FSet A), P X -> P ({|a|} ∪ X))
|
||
(Pdupl : forall (a : A) (X : FSet A) (px : P X),
|
||
transport P (dupl' a X) (Pcons a _ (Pcons a X px)) = Pcons a X px)
|
||
(Pcomm : forall (a b : A) (X : FSet A) (px : P X),
|
||
transport P (comm' a b X) (Pcons a _ (Pcons b X px)) = Pcons b _ (Pcons a X px)) :
|
||
forall a X, FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm ({|a|} ∪ X)
|
||
= Pcons a X (FSet_cons_ind P Pset Pempt Pcons Pdupl Pcomm X).
|
||
Proof.
|
||
intros.
|
||
unfold FSet_cons_ind.
|
||
simpl.
|
||
rewrite ?transport_pp.
|
||
hinduction X ; try(intros ; apply path_ishprop) ; simpl.
|
||
- admit.
|
||
- intro b.
|
||
unfold FSet_cons_ind.
|
||
simpl.
|
||
admit.
|
||
- intros.
|
||
unfold FSet_cons_ind.
|
||
simpl.
|
||
rewrite X.
|
||
*)
|
||
End Iso.
|