HITs-Examples/Mod2.v

396 lines
6.6 KiB
Coq

Require Import HoTT.
Require Export HoTT.
Theorem useful :
forall (A B : Type)
(f g : A -> B)
(a a' : A)
(p : a = a')
(q : f a = g a),
transport (fun x => f x = g x) p q = (ap f p)^ @ q @ (ap g p).
Proof.
intros.
induction p.
rewrite transport_1.
rewrite ap_1.
rewrite ap_1.
rewrite concat_p1.
simpl.
rewrite concat_1p.
reflexivity.
Qed.
Module Export modulo.
Private Inductive Mod2 : Type0 :=
| Z : Mod2
| succ : Mod2 -> Mod2.
Axiom mod : Z = succ(succ Z).
Fixpoint Mod2_ind
(P : Mod2 -> Type)
(a : P Z)
(s : forall (n : Mod2), P n -> P (succ n))
(mod' : mod # a = s (succ Z) (s Z a))
(x : Mod2)
{struct x}
: P x
:=
(match x return _ -> P x with
| Z => fun _ => a
| succ n => fun _ => s n ((Mod2_ind P a s mod') n)
end) mod'.
Axiom Mod2_ind_beta_mod : forall
(P : Mod2 -> Type)
(a : P Z)
(s : forall (n : Mod2), P n -> P (succ n))
(mod' : mod # a = s (succ Z) (s Z a))
, apD (Mod2_ind P a s mod') mod = mod'.
Fixpoint Mod2_rec
(P : Type)
(a : P)
(s : P -> P)
(mod' : a = s (s a))
(x : Mod2)
{struct x}
: P
:=
(match x return _ -> P with
| Z => fun _ => a
| succ n => fun _ => s ((Mod2_rec P a s mod') n)
end) mod'.
Axiom Mod2_rec_beta_mod : forall
(P : Type)
(a : P)
(s : P -> P)
(mod' : a = s (s a))
, ap (Mod2_rec P a s mod') mod = mod'.
End modulo.
Module Export moduloAlt.
Private Inductive Mod2A : Type0 :=
| ZA : Mod2A
| succA : Mod2A -> Mod2A.
Axiom modA : forall n : Mod2A, n = succA(succA n).
Fixpoint Mod2A_ind
(P : Mod2A -> Type)
(z : P ZA)
(s : forall n : Mod2A, P n -> P (succA n))
(mod' : forall (n : Mod2A) (a : P n),
modA n # a = s (succA n) (s n a))
(x : Mod2A)
{struct x}
: P x
:=
(match x return _ -> P x with
| ZA => fun _ => z
| succA n => fun _ => s n ((Mod2A_ind P z s mod') n)
end) mod'.
Axiom Mod2A_ind_beta_mod : forall
(P : Mod2A -> Type)
(z : P ZA)
(s : forall n : Mod2A, P n -> P (succA n))
(mod' : forall (n : Mod2A) (a : P n),
modA n # a = s (succA n) (s n a))
(n : Mod2A)
, apD (Mod2A_ind P z s mod') (modA n) = mod' n (Mod2A_ind P z s mod' n).
Fixpoint Mod2A_rec
(P : Type)
(z : P)
(s : P -> P)
(mod' : forall (a : P),
a = s (s a))
(x : Mod2A)
{struct x}
: P
:=
(match x return _ -> P with
| ZA => fun _ => z
| succA n => fun _ => s ((Mod2A_rec P z s mod') n)
end) mod'.
Axiom Mod2A_rec_beta_mod : forall
(P : Type)
(z : P)
(s : P -> P)
(mod' : forall (a : P),
a = s (s a))
(n : Mod2A)
, ap (Mod2A_rec P z s mod') (modA n) = mod' (Mod2A_rec P z s mod' n).
End moduloAlt.
Definition negate : Mod2 -> Mod2.
Proof.
refine (Mod2_ind _ _ _ _).
Unshelve.
Focus 2.
apply (succ Z).
Focus 2.
intros.
apply (succ H).
simpl.
rewrite transport_const.
rewrite <- mod.
reflexivity.
Defined.
Theorem modulo2 : forall n : Mod2, n = succ(succ n).
Proof.
refine (Mod2_ind _ _ _ _).
Unshelve.
Focus 2.
apply mod.
Focus 2.
intro n.
intro p.
apply (ap succ p).
simpl.
rewrite useful.
rewrite ap_idmap.
rewrite concat_Vp.
rewrite concat_1p.
rewrite ap_compose.
reflexivity.
Defined.
Definition plus : Mod2 -> Mod2 -> Mod2.
Proof.
intro n.
refine (Mod2_ind _ _ _ _).
Unshelve.
Focus 2.
apply n.
Focus 2.
intro m.
intro k.
apply (succ k).
simpl.
rewrite transport_const.
apply modulo2.
Defined.
Definition Bool_to_Mod2 : Bool -> Mod2.
Proof.
intro b.
destruct b.
apply (succ Z).
apply Z.
Defined.
Definition Mod2_to_Bool : Mod2 -> Bool.
Proof.
refine (Mod2_ind _ _ _ _).
Unshelve.
Focus 2.
apply false.
Focus 2.
intro n.
apply negb.
Focus 1.
simpl.
apply transport_const.
Defined.
Theorem eq1 : forall n : Bool, Mod2_to_Bool (Bool_to_Mod2 n) = n.
Proof.
intro b.
destruct b.
Focus 1.
compute.
reflexivity.
compute.
reflexivity.
Qed.
Theorem Bool_to_Mod2_negb : forall x : Bool,
succ (Bool_to_Mod2 x) = Bool_to_Mod2 (negb x).
Proof.
intros.
destruct x.
compute.
apply mod^.
compute.
apply reflexivity.
Defined.
Theorem eq2 : forall n : Mod2, Bool_to_Mod2 (Mod2_to_Bool n) = n.
Proof.
refine (Mod2_ind _ _ _ _).
Unshelve.
Focus 2.
compute.
reflexivity.
Focus 2.
intro n.
intro IHn.
symmetry.
transitivity (succ (Bool_to_Mod2 (Mod2_to_Bool n))).
Focus 1.
symmetry.
apply (ap succ IHn).
transitivity (Bool_to_Mod2 (negb (Mod2_to_Bool n))).
apply Bool_to_Mod2_negb.
enough (negb (Mod2_to_Bool n) = Mod2_to_Bool (succ n)).
apply (ap Bool_to_Mod2 X).
compute.
reflexivity.
simpl.
rewrite concat_p1.
rewrite concat_1p.
rewrite useful.
rewrite concat_p1.
rewrite ap_idmap.
rewrite ap_compose.
enough (ap Mod2_to_Bool mod = reflexivity false).
rewrite X.
simpl.
rewrite concat_1p.
rewrite inv_V.
reflexivity.
enough (IsHSet Bool).
apply axiomK_hset.
apply X.
apply hset_bool.
Defined.
Theorem adj :
forall x : Mod2, eq1 (Mod2_to_Bool x) = ap Mod2_to_Bool (eq2 x).
Proof.
intro x.
enough (IsHSet Bool).
apply set_path2.
apply hset_bool.
Defined.
Definition isomorphism : IsEquiv Mod2_to_Bool.
Proof.
apply (BuildIsEquiv Mod2 Bool Mod2_to_Bool Bool_to_Mod2 eq1 eq2 adj).
Qed.
Definition Mod2ToMod2A : Mod2 -> Mod2A.
Proof.
refine (Mod2_rec _ _ _ _).
Unshelve.
Focus 2.
apply ZA.
Focus 2.
apply succA.
Focus 1.
simpl.
apply modA.
Defined.
Definition Mod2AToMod2 : Mod2A -> Mod2.
Proof.
refine (Mod2A_rec _ _ _ _).
Unshelve.
Focus 1.
apply Z.
Focus 2.
apply succ.
Focus 1.
intro a.
apply (modulo2 a).
Defined.
Lemma Mod2AToMod2succA :
forall (n : Mod2A), Mod2AToMod2(succA n) = succ (Mod2AToMod2 n).
Proof.
reflexivity.
Defined.
Lemma Mod2ToMod2Asucc :
forall (n : Mod2), Mod2ToMod2A(succ n) = succA (Mod2ToMod2A n).
Proof.
reflexivity.
Defined.
Theorem eqI1 : forall (n : Mod2), n = Mod2AToMod2(Mod2ToMod2A n).
Proof.
refine (Mod2_ind _ _ _ _).
Unshelve.
Focus 2.
reflexivity.
Focus 2.
intro n.
intro H.
rewrite Mod2ToMod2Asucc.
rewrite Mod2AToMod2succA.
rewrite <- H.
reflexivity.
simpl.
rewrite useful.
rewrite ap_idmap.
rewrite concat_p1.
rewrite ap_compose.
rewrite Mod2_rec_beta_mod.
rewrite Mod2A_rec_beta_mod.
simpl.
simpl.
enough (modulo2 Z = mod).
rewrite X.
apply concat_Vp.
compute.
reflexivity.
Defined.
Theorem eqI2 : forall (n : Mod2A), n = Mod2ToMod2A(Mod2AToMod2 n).
Proof.
refine (Mod2A_ind _ _ _ _).
Focus 1.
reflexivity.
Unshelve.
Focus 2.
intros.
rewrite Mod2AToMod2succA.
rewrite Mod2ToMod2Asucc.
rewrite <- X.
reflexivity.
intros.
simpl.
rewrite useful.
rewrite ap_idmap.
rewrite ap_compose.
rewrite Mod2A_rec_beta_mod.