HITs-Examples/FiniteSets/fsets/monad.v

85 lines
2.2 KiB
Coq
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

(* [FSet] is a (strong and stable) finite powerset monad *)
Require Import HoTT HitTactics.
Require Export representations.definition fsets.properties fsets.operations.
Definition ffmap {A B : Type} : (A -> B) -> FSet A -> FSet B.
Proof.
intro f.
hrecursion.
- exact .
- intro a. exact {| f a |}.
- intros X Y. apply (X Y).
- apply assoc.
- apply comm.
- apply nl.
- apply nr.
- simpl. intro x. apply idem.
Defined.
Lemma ffmap_1 `{Funext} {A : Type} : @ffmap A A idmap = idmap.
Proof.
apply path_forall.
intro x. hinduction x; try (intros; f_ap);
try (intros; apply set_path2).
Defined.
Global Instance fset_functorish `{Funext}: Functorish FSet
:= { fmap := @ffmap; fmap_idmap := @ffmap_1 _ }.
Lemma ffmap_compose {A B C : Type} `{Funext} (f : A -> B) (g : B -> C) :
fmap FSet (g o f) = fmap _ g o fmap _ f.
Proof.
apply path_forall. intro x.
hrecursion x; try (intros; f_ap);
try (intros; apply set_path2).
Defined.
Definition join {A : Type} : FSet (FSet A) -> FSet A.
Proof.
hrecursion.
- exact .
- exact idmap.
- intros X Y. apply (X Y).
- apply assoc.
- apply comm.
- apply nl.
- apply nr.
- simpl. apply union_idem.
Defined.
Lemma join_assoc {A : Type} (X : FSet (FSet (FSet A))) :
join (ffmap join X) = join (join X).
Proof.
hrecursion X; try (intros; f_ap);
try (intros; apply set_path2).
Defined.
Lemma join_return_1 {A : Type} (X : FSet A) :
join ({| X |}) = X.
Proof. reflexivity. Defined.
Lemma join_return_fmap {A : Type} (X : FSet A) :
join ({| X |}) = join (ffmap (fun x => {|x|}) X).
Proof.
hrecursion X; try (intros; f_ap);
try (intros; apply set_path2).
Defined.
Lemma join_fmap_return_1 {A : Type} (X : FSet A) :
join (ffmap (fun x => {|x|}) X) = X.
Proof. refine ((join_return_fmap _)^ @ join_return_1 _). Defined.
Lemma fmap_isIn `{Univalence} {A B : Type} (f : A -> B) (a : A) (X : FSet A) :
a X -> (f a) (ffmap f X).
Proof.
hinduction X; try (intros; apply path_ishprop).
- apply idmap.
- intros b Hab; strip_truncations.
apply (tr (ap f Hab)).
- intros X0 X1 HX0 HX1 Ha.
strip_truncations. apply tr.
destruct Ha as [Ha | Ha].
+ left. by apply HX0.
+ right. by apply HX1.
Defined.