HITs-Examples/FiniteSets/lattice.v

206 lines
5.1 KiB
Coq

(* Typeclass for lattices *)
Require Import HoTT.
Require Import notation.
Section binary_operation.
Variable A : Type.
Class maximum :=
max_L : operation A.
Class minimum :=
min_L : operation A.
Class bottom :=
empty : A.
End binary_operation.
Arguments max_L {_} {_} _.
Arguments min_L {_} {_} _.
Arguments empty {_}.
Section JoinSemiLattice.
Variable A : Type.
Context {max_L : maximum A} {empty_L : bottom A}.
Class JoinSemiLattice :=
{
commutative_max_js :> Commutative max_L ;
associative_max_js :> Associative max_L ;
idempotent_max_js :> Idempotent max_L ;
neutralL_max_js :> NeutralL max_L empty_L ;
neutralR_max_js :> NeutralR max_L empty_L ;
}.
End JoinSemiLattice.
Arguments JoinSemiLattice _ {_} {_}.
Create HintDb joinsemilattice_hints.
Hint Resolve associativity : joinsemilattice_hints.
Hint Resolve (associativity _ _ _)^ : joinsemilattice_hints.
Hint Resolve commutative : joinsemilattice_hints.
Hint Resolve idempotency : joinsemilattice_hints.
Hint Resolve neutralityL : joinsemilattice_hints.
Hint Resolve neutralityR : joinsemilattice_hints.
Section Lattice.
Variable A : Type.
Context {max_L : maximum A} {min_L : minimum A} {empty_L : bottom A}.
Class Lattice :=
{
commutative_min :> Commutative min_L ;
commutative_max :> Commutative max_L ;
associative_min :> Associative min_L ;
associative_max :> Associative max_L ;
idempotent_min :> Idempotent min_L ;
idempotent_max :> Idempotent max_L ;
neutralL_max :> NeutralL max_L empty_L ;
neutralR_max :> NeutralR max_L empty_L ;
absorption_min_max :> Absorption min_L max_L ;
absorption_max_min :> Absorption max_L min_L
}.
End Lattice.
Arguments Lattice _ {_} {_} {_}.
Create HintDb lattice_hints.
Hint Resolve associativity : lattice_hints.
Hint Resolve (associativity _ _ _)^ : lattice_hints.
Hint Resolve commutative : lattice_hints.
Hint Resolve absorb : lattice_hints.
Hint Resolve idempotency : lattice_hints.
Hint Resolve neutralityL : lattice_hints.
Hint Resolve neutralityR : lattice_hints.
Section BoolLattice.
Ltac solve_bool :=
let x := fresh in
repeat (intro x ; destruct x)
; compute
; auto
; try contradiction.
Instance maximum_bool : maximum Bool := orb.
Instance minimum_bool : minimum Bool := andb.
Instance bottom_bool : bottom Bool := false.
Global Instance lattice_bool : Lattice Bool.
Proof.
split ; solve_bool.
Defined.
Definition and_true : forall b, andb b true = b.
Proof.
solve_bool.
Defined.
Definition and_false : forall b, andb b false = false.
Proof.
solve_bool.
Defined.
Definition dist : forall b b b,
andb b (orb b b) = orb (andb b b) (andb b b).
Proof.
solve_bool.
Defined.
Definition dist : forall b b b,
orb b (andb b b) = andb (orb b b) (orb b b).
Proof.
solve_bool.
Defined.
Definition max_min : forall b b,
orb (andb b b) b = b.
Proof.
solve_bool.
Defined.
End BoolLattice.
Section fun_lattice.
Context {A B : Type}.
Context `{Lattice B}.
Context `{Funext}.
Global Instance max_fun : maximum (A -> B) :=
fun (f g : A -> B) (a : A) => max_L0 (f a) (g a).
Global Instance min_fun : minimum (A -> B) :=
fun (f g : A -> B) (a : A) => min_L0 (f a) (g a).
Global Instance bot_fun : bottom (A -> B)
:= fun _ => empty_L.
Ltac solve_fun :=
compute ; intros ; apply path_forall ; intro ;
eauto with lattice_hints typeclass_instances.
Global Instance lattice_fun : Lattice (A -> B).
Proof.
split ; solve_fun.
Defined.
End fun_lattice.
Section sub_lattice.
Context {A : Type} {P : A -> hProp}.
Context `{Lattice A}.
Context {Hmax : forall x y, P x -> P y -> P (max_L0 x y)}.
Context {Hmin : forall x y, P x -> P y -> P (min_L0 x y)}.
Context {Hbot : P empty_L}.
Definition AP : Type := sig P.
Instance botAP : bottom AP := (empty_L ; Hbot).
Instance maxAP : maximum AP :=
fun x y =>
match x, y with
| (a ; pa), (b ; pb) => (max_L0 a b ; Hmax a b pa pb)
end.
Instance minAP : minimum AP :=
fun x y =>
match x, y with
| (a ; pa), (b ; pb) => (min_L0 a b ; Hmin a b pa pb)
end.
Instance hprop_sub : forall c, IsHProp (P c).
Proof.
apply _.
Defined.
Ltac solve_sub :=
let x := fresh in
repeat (intro x ; destruct x)
; simple refine (path_sigma _ _ _ _ _)
; simpl
; try (apply hprop_sub)
; eauto 3 with lattice_hints typeclass_instances.
Global Instance lattice_sub : Lattice AP.
Proof.
split ; solve_sub.
Defined.
End sub_lattice.
Create HintDb bool_lattice_hints.
Hint Resolve associativity : bool_lattice_hints.
Hint Resolve (associativity _ _ _)^ : bool_lattice_hints.
Hint Resolve commutative : bool_lattice_hints.
Hint Resolve absorb : bool_lattice_hints.
Hint Resolve idempotency : bool_lattice_hints.
Hint Resolve neutralityL : bool_lattice_hints.
Hint Resolve neutralityR : bool_lattice_hints.
Hint Resolve
associativity
and_true and_false
dist dist max_min
: bool_lattice_hints.