HITs-Examples/FiniteSets/fsets/isomorphism.v

84 lines
2.2 KiB
Coq

(* The representations [FSet A] and [FSetC A] are isomorphic for every A *)
Require Import HoTT HitTactics.
From representations Require Import cons_repr definition.
From fsets Require Import operations_cons_repr properties_cons_repr.
Section Iso.
Context {A : Type}.
Context `{Univalence}.
Definition FSetC_to_FSet: FSetC A -> FSet A.
Proof.
hrecursion.
- apply E.
- intros a x. apply (U (L a) x).
- intros. cbn.
etransitivity. apply assoc.
apply (ap (fun y => U y x)).
apply idem.
- intros. cbn.
etransitivity. apply assoc.
etransitivity. refine (ap (fun y => U y x) _ ).
apply FSet.comm.
symmetry.
apply assoc.
Defined.
Definition FSet_to_FSetC: FSet A -> FSetC A :=
FSet_rec A (FSetC A) (FSetC.trunc A) Nil singleton append append_assoc
append_comm append_nl append_nr singleton_idem.
Lemma append_union: forall (x y: FSetC A),
FSetC_to_FSet (append x y) = U (FSetC_to_FSet x) (FSetC_to_FSet y).
Proof.
intros x.
hrecursion x; try (intros; apply path_forall; intro; apply set_path2).
- intros. symmetry. apply nl.
- intros a x HR y. rewrite HR. apply assoc.
Defined.
Lemma repr_iso_id_l: forall (x: FSet A), FSetC_to_FSet (FSet_to_FSetC x) = x.
Proof.
hinduction; try (intros; apply set_path2).
- reflexivity.
- intro. apply nr.
- intros x y p q. rewrite append_union, p, q. reflexivity.
Defined.
Lemma repr_iso_id_r: forall (x: FSetC A), FSet_to_FSetC (FSetC_to_FSet x) = x.
Proof.
hinduction; try (intros; apply set_path2).
- reflexivity.
- intros a x HR. rewrite HR. reflexivity.
Defined.
Global Instance: IsEquiv FSet_to_FSetC.
Proof.
apply isequiv_biinv.
unfold BiInv. split.
exists FSetC_to_FSet.
unfold Sect. apply repr_iso_id_l.
exists FSetC_to_FSet.
unfold Sect. apply repr_iso_id_r.
Defined.
Global Instance: IsEquiv FSetC_to_FSet.
Proof.
change (IsEquiv (FSet_to_FSetC)^-1).
apply isequiv_inverse.
Defined.
Theorem repr_iso: FSet A <~> FSetC A.
Proof.
simple refine (@BuildEquiv (FSet A) (FSetC A) FSet_to_FSetC _ ).
Defined.
Theorem fset_fsetc : FSet A = FSetC A.
Proof.
apply (equiv_path _ _)^-1.
exact repr_iso.
Defined.
End Iso.