mirror of https://github.com/nmvdw/HITs-Examples
24 lines
833 B
Coq
24 lines
833 B
Coq
Require Import HoTT.
|
|
|
|
(* Lemmas from this file do not belong in this project. *)
|
|
(* Some of them should probably be in the HoTT library? *)
|
|
|
|
Lemma ap_inl_path_sum_inl {A B} (x y : A) (p : inl x = inl y) :
|
|
ap inl (path_sum_inl B p) = p.
|
|
Proof.
|
|
transitivity (@path_sum _ B (inl x) (inl y) (path_sum_inl B p));
|
|
[ | apply (eisretr_path_sum _) ].
|
|
destruct (path_sum_inl B p).
|
|
reflexivity.
|
|
Defined.
|
|
Lemma ap_equiv {A B} (f : A <~> B) {x y : A} (p : x = y) :
|
|
ap (f^-1 o f) p = eissect f x @ p @ (eissect f y)^.
|
|
Proof. destruct p. hott_simpl. Defined.
|
|
|
|
Global Instance hprop_lem `{Univalence} (T : Type) (Ttrunc : IsHProp T) : IsHProp (T + ~T).
|
|
Proof.
|
|
apply (equiv_hprop_allpath _)^-1.
|
|
intros [x | nx] [y | ny] ; try f_ap ; try (apply Ttrunc) ; try contradiction.
|
|
- apply equiv_hprop_allpath. apply _.
|
|
Defined.
|