mirror of https://github.com/nmvdw/HITs-Examples
244 lines
6.3 KiB
Coq
244 lines
6.3 KiB
Coq
(* Implementation of [FSet A] using lists *)
|
||
Require Import HoTT HitTactics.
|
||
Require Import FSets set_interface kuratowski.length prelude dec_fset.
|
||
|
||
Section Operations.
|
||
Context `{Univalence}.
|
||
|
||
Global Instance list_empty A : hasEmpty (list A) := nil.
|
||
|
||
Global Instance list_single A: hasSingleton (list A) A := fun a => cons a nil.
|
||
|
||
Global Instance list_union A : hasUnion (list A).
|
||
Proof.
|
||
intros l1 l2.
|
||
induction l1.
|
||
* apply l2.
|
||
* apply (cons a IHl1).
|
||
Defined.
|
||
|
||
Global Instance list_membership A : hasMembership (list A) A.
|
||
Proof.
|
||
intros a l.
|
||
induction l as [ | b l IHl].
|
||
- apply False_hp.
|
||
- apply (hor (a = b) IHl).
|
||
Defined.
|
||
|
||
Global Instance list_comprehension A: hasComprehension (list A) A.
|
||
Proof.
|
||
intros ϕ l.
|
||
induction l as [ | b l IHl].
|
||
- apply nil.
|
||
- apply (if ϕ b then cons b IHl else IHl).
|
||
Defined.
|
||
|
||
Fixpoint list_to_set A (l : list A) : FSet A :=
|
||
match l with
|
||
| nil => ∅
|
||
| cons a l => {|a|} ∪ (list_to_set A l)
|
||
end.
|
||
|
||
End Operations.
|
||
|
||
Section ListToSet.
|
||
Variable A : Type.
|
||
Context `{Univalence}.
|
||
|
||
Lemma member_isIn (a : A) (l : list A) :
|
||
member a l = a ∈ (list_to_set A l).
|
||
Proof.
|
||
induction l ; unfold member in * ; simpl in *.
|
||
- reflexivity.
|
||
- rewrite IHl.
|
||
unfold hor, merely, lor.
|
||
apply path_iff_hprop ; intros z ; strip_truncations ; destruct z as [z1 | z2].
|
||
* apply (tr (inl (tr z1))).
|
||
* apply (tr (inr z2)).
|
||
* strip_truncations ; apply (tr (inl z1)).
|
||
* apply (tr (inr z2)).
|
||
Defined.
|
||
|
||
Definition empty_empty : list_to_set A ∅ = ∅ := idpath.
|
||
|
||
Lemma filter_comprehension (ϕ : A -> Bool) (l : list A) :
|
||
list_to_set A (filter ϕ l) = {| list_to_set A l | ϕ |}.
|
||
Proof.
|
||
induction l ; cbn in *.
|
||
- reflexivity.
|
||
- destruct (ϕ a) ; cbn in * ; unfold list_to_set in IHl.
|
||
* refine (ap (fun y => {|a|} ∪ y) _).
|
||
apply IHl.
|
||
* rewrite nl.
|
||
apply IHl.
|
||
Defined.
|
||
|
||
Definition singleton_single (a : A) : list_to_set A (singleton a) = {|a|} :=
|
||
nr {|a|}.
|
||
|
||
Lemma append_union (l1 l2 : list A) :
|
||
list_to_set A (list_union _ l1 l2) = (list_to_set A l1) ∪ (list_to_set A l2).
|
||
Proof.
|
||
induction l1 ; simpl.
|
||
- apply (nl _)^.
|
||
- rewrite IHl1, assoc.
|
||
reflexivity.
|
||
Defined.
|
||
|
||
Fixpoint reverse (l : list A) : list A :=
|
||
match l with
|
||
| nil => nil
|
||
| cons a l => {|a|} ∪ (reverse l) ∪ {|a|}
|
||
end.
|
||
|
||
Lemma reverse_set (l : list A) :
|
||
list_to_set A l = list_to_set A (reverse l).
|
||
Proof.
|
||
induction l ; simpl.
|
||
- reflexivity.
|
||
- rewrite IHl, append_union.
|
||
simpl.
|
||
symmetry.
|
||
rewrite nr, comm, <- assoc, idem.
|
||
apply comm.
|
||
Defined.
|
||
|
||
End ListToSet.
|
||
|
||
Section lists_are_sets.
|
||
Context `{Univalence}.
|
||
|
||
Global Instance lists_sets : sets list list_to_set.
|
||
Proof.
|
||
split ; intros.
|
||
- apply empty_empty.
|
||
- apply singleton_single.
|
||
- apply append_union.
|
||
- apply filter_comprehension.
|
||
- apply member_isIn.
|
||
Defined.
|
||
End lists_are_sets.
|
||
|
||
Section refinement_examples.
|
||
Context `{Univalence}.
|
||
Context {A : Type}.
|
||
|
||
Definition list_all (ϕ : A -> hProp) : list A -> hProp
|
||
:= refinement list list_to_set (all ϕ).
|
||
|
||
Lemma list_all_set (ϕ : A -> hProp) (X : list A)
|
||
: list_all ϕ X = all ϕ (list_to_set A X).
|
||
Proof.
|
||
induction X ; try reflexivity.
|
||
Defined.
|
||
|
||
Lemma list_all_intro (X : list A) (ϕ : A -> hProp)
|
||
: forall (HX : forall a, a ∈ X -> ϕ a), list_all ϕ X.
|
||
Proof.
|
||
rewrite list_all_set.
|
||
intros H1.
|
||
assert (forall (a : A), a ∈ (list_to_set A X) -> ϕ a) as H2.
|
||
{
|
||
intros a H3.
|
||
rewrite <- (member_isIn A a X) in H3.
|
||
apply (H1 a H3).
|
||
}
|
||
apply (all_intro _ _ H2).
|
||
Defined.
|
||
|
||
Lemma list_all_elim (X : list A) (ϕ : A -> hProp) a
|
||
: list_all ϕ X -> (a ∈ X) -> ϕ a.
|
||
Proof.
|
||
rewrite list_all_set, (member_isIn A a X).
|
||
apply all_elim.
|
||
Defined.
|
||
|
||
Definition list_exist (ϕ : A -> hProp) : list A -> hProp
|
||
:= refinement list list_to_set (exist ϕ).
|
||
|
||
Lemma list_exist_set (ϕ : A -> hProp) (X : list A)
|
||
: list_exist ϕ X = exist ϕ (list_to_set A X).
|
||
Proof.
|
||
induction X ; try reflexivity.
|
||
Defined.
|
||
|
||
Lemma listexist_intro (X : list A) (ϕ : A -> hProp) a
|
||
: a ∈ X -> ϕ a -> list_exist ϕ X.
|
||
Proof.
|
||
rewrite list_exist_set, (member_isIn A a X).
|
||
apply exist_intro.
|
||
Defined.
|
||
|
||
Lemma exist_elim (X : list A) (ϕ : A -> hProp)
|
||
: list_exist ϕ X -> hexists (fun a => a ∈ X * ϕ a)%type.
|
||
Proof.
|
||
rewrite list_exist_set.
|
||
assert (hexists (fun a : A => a ∈ (list_to_set A X) * ϕ a)
|
||
-> hexists (fun a : A => a ∈ X * ϕ a))%type
|
||
as H2.
|
||
{
|
||
intros H1.
|
||
strip_truncations.
|
||
destruct H1 as [a H1].
|
||
rewrite <- (member_isIn A a X) in H1.
|
||
refine (tr(a;H1)).
|
||
}
|
||
intros H1.
|
||
apply (H2 (exist_elim _ _ H1)).
|
||
Defined.
|
||
|
||
Context `{MerelyDecidablePaths A}.
|
||
|
||
Global Instance dec_memb a (l : list A) : Decidable (a ∈ l).
|
||
Proof.
|
||
induction l as [ | a0 l] ; simpl.
|
||
- apply _.
|
||
- unfold Decidable.
|
||
destruct IHl as [t | p].
|
||
* apply (inl(tr(inr t))).
|
||
* destruct (H0 a a0) as [t | p'].
|
||
** left.
|
||
strip_truncations.
|
||
apply (tr(inl t)).
|
||
** refine (inr(fun n => _)).
|
||
strip_truncations.
|
||
destruct n as [n1 | n2].
|
||
*** apply (p' (tr n1)).
|
||
*** apply (p n2).
|
||
Defined.
|
||
|
||
Global Instance dec_memb_list : hasMembership_decidable (list A) A.
|
||
Proof.
|
||
intros a l.
|
||
destruct (dec (a ∈ l)).
|
||
- apply true.
|
||
- apply false.
|
||
Defined.
|
||
|
||
Lemma fset_list_memb a (l : list A) : a ∈_d (list_to_set A l) = a ∈_d l.
|
||
Proof.
|
||
unfold member_dec, dec_memb_list, fset_member_bool.
|
||
destruct (dec a ∈ (list_to_set A l)), (dec a ∈ l) ; try reflexivity.
|
||
- contradiction n.
|
||
rewrite <- (f_member _ list_to_set) in t.
|
||
apply t.
|
||
- contradiction n.
|
||
rewrite (f_member _ list_to_set) in t.
|
||
apply t.
|
||
Defined.
|
||
|
||
Definition set_length : list A -> nat
|
||
:= refinement list list_to_set length.
|
||
|
||
Definition set_length_nil : set_length nil = 0 := idpath.
|
||
|
||
Definition set_length_cons a l
|
||
: set_length (cons a l) = if (a ∈_d l) then set_length l else S(set_length l).
|
||
Proof.
|
||
unfold set_length, refinement.
|
||
simpl.
|
||
rewrite length_compute, fset_list_memb.
|
||
reflexivity.
|
||
Defined.
|
||
End refinement_examples.
|