mirror of https://github.com/nmvdw/HITs-Examples
243 lines
7.4 KiB
Coq
243 lines
7.4 KiB
Coq
Require Import HoTT.
|
||
Require Import disjunction lattice notation.
|
||
|
||
Section subobjects.
|
||
Variable A : Type.
|
||
|
||
Definition Sub := A -> hProp.
|
||
|
||
Global Instance sub_empty : hasEmpty Sub := fun _ => False_hp.
|
||
Global Instance sub_union : hasUnion Sub := max_fun.
|
||
Global Instance sub_intersection : hasIntersection Sub := min_fun.
|
||
Global Instance sub_singleton : hasSingleton Sub A
|
||
:= fun a b => BuildhProp (Trunc (-1) (b = a)).
|
||
Global Instance sub_membership : hasMembership Sub A := fun a X => X a.
|
||
Global Instance sub_comprehension : hasComprehension Sub A
|
||
:= fun ϕ X a => BuildhProp (X a * (ϕ a = true)).
|
||
Global Instance sub_subset `{Univalence} : hasSubset Sub
|
||
:= fun X Y => BuildhProp (forall a, X a -> Y a).
|
||
|
||
End subobjects.
|
||
|
||
Section sub_classes.
|
||
Context {A : Type}.
|
||
Variable C : (A -> hProp) -> hProp.
|
||
Context `{Univalence}.
|
||
|
||
Instance subobject_lattice : Lattice (Sub A).
|
||
Proof.
|
||
apply _.
|
||
Defined.
|
||
|
||
Definition closedUnion := forall X Y, C X -> C Y -> C (X ∪ Y).
|
||
Definition closedIntersection := forall X Y, C X -> C Y -> C (X ∩ Y).
|
||
Definition closedEmpty := C ∅.
|
||
Definition closedSingleton := forall a, C {|a|}.
|
||
Definition hasDecidableEmpty := forall X, C X -> hor (X = ∅) (hexists (fun a => a ∈ X)).
|
||
End sub_classes.
|
||
|
||
Section isIn.
|
||
Variable A : Type.
|
||
Variable C : (A -> hProp) -> hProp.
|
||
|
||
Context `{Univalence}.
|
||
Context {HS : closedSingleton C} {HIn : forall X, C X -> forall a, Decidable (X a)}.
|
||
|
||
Theorem decidable_A_isIn : forall a b : A, Decidable (Trunc (-1) (b = a)).
|
||
Proof.
|
||
intros.
|
||
unfold Decidable, closedSingleton in *.
|
||
pose (HIn {|a|} (HS a) b).
|
||
destruct s.
|
||
- unfold singleton in t.
|
||
left.
|
||
apply t.
|
||
- right.
|
||
intro p.
|
||
unfold singleton in n.
|
||
strip_truncations.
|
||
contradiction (n (tr p)).
|
||
Defined.
|
||
|
||
End isIn.
|
||
|
||
Section intersect.
|
||
Variable A : Type.
|
||
Variable C : (Sub A) -> hProp.
|
||
Context `{Univalence}.
|
||
|
||
Global Instance hprop_lem : forall (T : Type) (Ttrunc : IsHProp T), IsHProp (T + ~T).
|
||
Proof.
|
||
intros.
|
||
apply (equiv_hprop_allpath _)^-1.
|
||
intros [x | nx] [y | ny] ; try f_ap ; try (apply Ttrunc) ; try contradiction.
|
||
- apply equiv_hprop_allpath. apply _.
|
||
Defined.
|
||
|
||
Context
|
||
{HI : closedIntersection C} {HE : closedEmpty C}
|
||
{HS : closedSingleton C} {HDE : hasDecidableEmpty C}.
|
||
|
||
Theorem decidable_A_intersect : forall a b : A, Decidable (Trunc (-1) (b = a)).
|
||
Proof.
|
||
intros.
|
||
unfold Decidable, closedEmpty, closedIntersection, closedSingleton, hasDecidableEmpty in *.
|
||
pose (HI {|a|} {|b|} (HS a) (HS b)) as IntAB.
|
||
pose (HDE ({|a|} ∪ {|b|}) IntAB) as IntE.
|
||
refine (@Trunc_rec _ _ _ _ _ IntE) ; intros [p | p] ; unfold min_fun, singleton in p.
|
||
- right.
|
||
intro q.
|
||
strip_truncations.
|
||
rewrite q in p.
|
||
enough (a ∈ ∅) as X.
|
||
{ apply X. }
|
||
rewrite <- p.
|
||
cbn.
|
||
split ; apply (tr idpath).
|
||
- strip_truncations.
|
||
destruct p as [a0 [t1 t2]].
|
||
strip_truncations.
|
||
apply (inl (tr (t2^ @ t1))).
|
||
Defined.
|
||
End intersect.
|
||
|
||
Section finite_hott.
|
||
Variable A : Type.
|
||
Context `{Univalence} `{IsHSet A}.
|
||
|
||
Definition finite (X : Sub A) : hProp := BuildhProp (Finite {a : A & a ∈ X}).
|
||
|
||
Definition singleton : closedSingleton finite.
|
||
Proof.
|
||
intros a.
|
||
simple refine (Build_Finite _ _ _).
|
||
- apply 1.
|
||
- apply tr.
|
||
simple refine (BuildEquiv _ _ _ _).
|
||
* apply (fun _ => inr tt).
|
||
* simple refine (BuildIsEquiv _ _ _ _ _ _ _) ; unfold Sect in *.
|
||
** apply (fun _ => (a;tr idpath)).
|
||
** intros x ; destruct x as [ | x] ; try contradiction.
|
||
destruct x ; reflexivity.
|
||
** intros [b bp] ; simpl.
|
||
strip_truncations.
|
||
simple refine (path_sigma _ _ _ _ _).
|
||
*** apply bp^.
|
||
*** apply path_ishprop.
|
||
** intros.
|
||
apply path_ishprop.
|
||
Defined.
|
||
|
||
Definition empty_finite : closedEmpty finite.
|
||
Proof.
|
||
simple refine (Build_Finite _ _ _).
|
||
- apply 0.
|
||
- apply tr.
|
||
simple refine (BuildEquiv _ _ _ _).
|
||
intros [a p] ; apply p.
|
||
Defined.
|
||
|
||
Definition decidable_empty_finite : hasDecidableEmpty finite.
|
||
Proof.
|
||
intros X Y.
|
||
destruct Y as [n Xn].
|
||
strip_truncations.
|
||
simpl in Xn.
|
||
destruct Xn as [f [g fg gf adj]].
|
||
destruct n.
|
||
- refine (tr(inl _)).
|
||
unfold empty.
|
||
apply path_forall.
|
||
intro z.
|
||
apply path_iff_hprop.
|
||
* intros p.
|
||
contradiction (f(z;p)).
|
||
* contradiction.
|
||
- refine (tr(inr _)).
|
||
apply (tr(g(inr tt))).
|
||
Defined.
|
||
|
||
Lemma no_union
|
||
(f : forall (X Y : Sub A),
|
||
Finite {a : A & X a} -> Finite {a : A & Y a}
|
||
-> Finite ({a : A & (X ∪ Y) a}))
|
||
(a b : A)
|
||
:
|
||
hor (a = b) (a = b -> Empty).
|
||
Proof.
|
||
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
|
||
destruct f as [n pn].
|
||
strip_truncations.
|
||
destruct pn as [f [g fg gf adj]].
|
||
unfold Sect in *.
|
||
destruct n.
|
||
- cbn in *. contradiction f.
|
||
exists a.
|
||
apply (tr(inl(tr idpath))).
|
||
- destruct n ; cbn in *.
|
||
-- pose ((a;tr(inl(tr idpath)))
|
||
: {a0 : A & Trunc (-1) (Trunc (-1) (a0 = a) + Trunc (-1) (a0 = b))})
|
||
as s1.
|
||
pose ((b;tr(inr(tr idpath)))
|
||
: {a0 : A & Trunc (-1) (Trunc (-1) (a0 = a) + Trunc (-1) (a0 = b))})
|
||
as s2.
|
||
pose (f s1) as fs1.
|
||
pose (f s2) as fs2.
|
||
assert (fs1 = fs2) as fs_eq.
|
||
{ apply path_ishprop. }
|
||
pose (g fs1) as gfs1.
|
||
pose (g fs2) as gfs2.
|
||
refine (tr(inl _)).
|
||
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
|
||
unfold fs1, fs2 in fs_eq. rewrite fs_eq.
|
||
reflexivity.
|
||
-- refine (tr(inr _)).
|
||
intros p.
|
||
pose (inl(inr tt) : Fin n + Unit + Unit) as s1.
|
||
pose (inr tt : Fin n + Unit + Unit) as s2.
|
||
pose (g s1) as gs1.
|
||
pose (c := g s1).
|
||
assert (c = gs1) as ps1. reflexivity.
|
||
pose (g s2) as gs2.
|
||
pose (d := g s2).
|
||
assert (d = gs2) as ps2. reflexivity.
|
||
pose (f gs1) as gfs1.
|
||
pose (f gs2) as gfs2.
|
||
destruct c as [x px] ; destruct d as [y py].
|
||
simple refine (Trunc_ind _ _ px) ; intros p1.
|
||
simple refine (Trunc_ind _ _ py) ; intros p2.
|
||
simpl.
|
||
assert (x = y -> Empty) as X1.
|
||
{
|
||
enough (s1 = s2) as X.
|
||
{
|
||
intros.
|
||
unfold s1, s2 in X.
|
||
refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
|
||
+ apply tt.
|
||
+ rewrite X ; apply tt.
|
||
}
|
||
transitivity gfs1.
|
||
{ unfold gfs1, s1. apply (fg s1)^. }
|
||
symmetry ; transitivity gfs2.
|
||
{ unfold gfs2, s2. apply (fg s2)^. }
|
||
unfold gfs2, gfs1.
|
||
rewrite <- ps1, <- ps2.
|
||
f_ap.
|
||
simple refine (path_sigma _ _ _ _ _).
|
||
* cbn.
|
||
destruct p1 as [p1 | p1] ; destruct p2 as [p2 | p2] ; strip_truncations.
|
||
** apply (p2 @ p1^).
|
||
** refine (p2 @ _^ @ p1^). auto.
|
||
** refine (p2 @ _ @ p1^). auto.
|
||
** apply (p2 @ p1^).
|
||
* apply path_ishprop.
|
||
}
|
||
apply X1.
|
||
destruct p1 as [p1 | p1] ; destruct p2 as [p2 | p2] ; strip_truncations.
|
||
** apply (p1 @ p2^).
|
||
** refine (p1 @ _ @ p2^). auto.
|
||
** refine (p1 @ _ @ p2^). symmetry. auto.
|
||
** apply (p1 @ p2^).
|
||
Defined.
|
||
End finite_hott. |