HITs-Examples/FiniteSets/list_representation/properties.v

61 lines
1.5 KiB
Coq
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

(** Properties of the operations on [FSetC A]. These are needed to prove that the
representations are isomorphic. *)
Require Import HoTT HitTactics.
Require Import list_representation list_representation.operations.
Section properties.
Context {A : Type}.
Definition append_nl (x: FSetC A) : x = x
:= idpath.
Lemma append_nr : forall (x: FSetC A), x = x.
Proof.
hinduction; try (intros; apply path_ishprop).
- reflexivity.
- intros. apply (ap (fun y => a;;y) X).
Defined.
Lemma append_assoc :
forall (x y z: FSetC A), x (y z) = (x y) z.
Proof.
intros x y z.
hinduction x ; try (intros ; apply path_ishprop).
- reflexivity.
- intros.
cbn.
f_ap.
Defined.
Lemma append_singleton: forall (a: A) (x: FSetC A),
a ;; x = x (a ;; ).
Proof.
intro a. hinduction; try (intros; apply path_ishprop).
- reflexivity.
- intros b x HR.
refine (comm_s _ _ _ @ ap (fun y => b ;; y) HR).
Defined.
Lemma append_comm :
forall (x1 x2: FSetC A), x1 x2 = x2 x1.
Proof.
intros x1 x2.
hinduction x1 ; try (intros ; apply path_ishprop).
- intros.
apply (append_nr _)^.
- intros a x HR.
refine (ap (fun y => a;;y) HR @ _).
refine (append_singleton _ _ @ _).
refine ((append_assoc _ _ _)^ @ _).
refine (ap (x2 ) (append_singleton _ _)^).
Defined.
Lemma singleton_idem: forall (a: A),
{|a|} {|a|} = {|a|}.
Proof.
intro.
apply dupl.
Defined.
End properties.