mirror of https://github.com/nmvdw/HITs-Examples
76 lines
2.1 KiB
Coq
76 lines
2.1 KiB
Coq
(* Properties of the operations on [FSetC A] *)
|
|
Require Import HoTT HitTactics.
|
|
Require Import representations.cons_repr.
|
|
From fsets Require Import operations_cons_repr.
|
|
|
|
Section properties.
|
|
Context {A : Type}.
|
|
|
|
Lemma append_nl:
|
|
forall (x: FSetC A), append ∅ x = x.
|
|
Proof.
|
|
intro. reflexivity.
|
|
Defined.
|
|
|
|
Lemma append_nr:
|
|
forall (x: FSetC A), append x ∅ = x.
|
|
Proof.
|
|
hinduction; try (intros; apply set_path2).
|
|
- reflexivity.
|
|
- intros. apply (ap (fun y => a ;; y) X).
|
|
Defined.
|
|
|
|
Lemma append_assoc {H: Funext}:
|
|
forall (x y z: FSetC A), append x (append y z) = append (append x y) z.
|
|
Proof.
|
|
intro x; hinduction x; try (intros; apply set_path2).
|
|
- reflexivity.
|
|
- intros a x HR y z.
|
|
specialize (HR y z).
|
|
apply (ap (fun y => a ;; y) HR).
|
|
- intros. apply path_forall.
|
|
intro. apply path_forall.
|
|
intro. apply set_path2.
|
|
- intros. apply path_forall.
|
|
intro. apply path_forall.
|
|
intro. apply set_path2.
|
|
Defined.
|
|
|
|
Lemma append_singleton: forall (a: A) (x: FSetC A),
|
|
a ;; x = append x (a ;; ∅).
|
|
Proof.
|
|
intro a. hinduction; try (intros; apply set_path2).
|
|
- reflexivity.
|
|
- intros b x HR. refine (_ @ _).
|
|
+ apply comm.
|
|
+ apply (ap (fun y => b ;; y) HR).
|
|
Defined.
|
|
|
|
Lemma append_comm {H: Funext}:
|
|
forall (x1 x2: FSetC A), append x1 x2 = append x2 x1.
|
|
Proof.
|
|
intro x1.
|
|
hinduction x1; try (intros; apply set_path2).
|
|
- intros. symmetry. apply append_nr.
|
|
- intros a x1 HR x2.
|
|
etransitivity.
|
|
apply (ap (fun y => a;;y) (HR x2)).
|
|
transitivity (append (append x2 x1) (a;;∅)).
|
|
+ apply append_singleton.
|
|
+ etransitivity.
|
|
* symmetry. apply append_assoc.
|
|
* simple refine (ap (fun y => append x2 y) (append_singleton _ _)^).
|
|
- intros. apply path_forall.
|
|
intro. apply set_path2.
|
|
- intros. apply path_forall.
|
|
intro. apply set_path2.
|
|
Defined.
|
|
|
|
Lemma singleton_idem: forall (a: A),
|
|
append (singleton a) (singleton a) = singleton a.
|
|
Proof.
|
|
unfold singleton. intro. cbn. apply dupl.
|
|
Defined.
|
|
|
|
End properties.
|