mirror of https://github.com/nmvdw/HITs-Examples
603 lines
16 KiB
Coq
603 lines
16 KiB
Coq
Require Import HoTT HitTactics.
|
|
Require Export definition operations.
|
|
|
|
Section properties.
|
|
|
|
Context {A : Type}.
|
|
Context {A_deceq : DecidablePaths A}.
|
|
|
|
(** union properties *)
|
|
Theorem union_idem : forall x: FSet A, U x x = x.
|
|
Proof.
|
|
hinduction;
|
|
try (intros ; apply set_path2) ; cbn.
|
|
- apply nl.
|
|
- apply idem.
|
|
- intros x y P Q.
|
|
rewrite assoc.
|
|
rewrite (comm x y).
|
|
rewrite <- (assoc y x x).
|
|
rewrite P.
|
|
rewrite (comm y x).
|
|
rewrite <- (assoc x y y).
|
|
f_ap.
|
|
Defined.
|
|
|
|
|
|
(** isIn properties *)
|
|
Lemma isIn_singleton_eq (a b: A) : isIn a (L b) = true -> a = b.
|
|
Proof. unfold isIn. simpl.
|
|
destruct (dec (a = b)). intro. apply p.
|
|
intro X.
|
|
contradiction (false_ne_true X).
|
|
Defined.
|
|
|
|
Lemma isIn_empty_false (a: A) : isIn a E = true -> Empty.
|
|
Proof.
|
|
cbv. intro X.
|
|
contradiction (false_ne_true X).
|
|
Defined.
|
|
|
|
Lemma isIn_union (a: A) (X Y: FSet A) :
|
|
isIn a (U X Y) = (isIn a X || isIn a Y)%Bool.
|
|
Proof. reflexivity. Qed.
|
|
|
|
(** comprehension properties *)
|
|
Lemma comprehension_false Y : comprehension (fun a => isIn a E) Y = E.
|
|
Proof.
|
|
hrecursion Y; try (intros; apply set_path2).
|
|
- cbn. reflexivity.
|
|
- cbn. reflexivity.
|
|
- intros x y IHa IHb.
|
|
cbn.
|
|
rewrite IHa.
|
|
rewrite IHb.
|
|
rewrite nl.
|
|
reflexivity.
|
|
Defined.
|
|
|
|
Theorem comprehension_or : forall ϕ ψ (x: FSet A),
|
|
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x)
|
|
(comprehension ψ x).
|
|
Proof.
|
|
intros ϕ ψ.
|
|
hinduction; try (intros; apply set_path2).
|
|
- cbn. symmetry ; apply nl.
|
|
- cbn. intros.
|
|
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
|
|
* apply idem.
|
|
* apply nr.
|
|
* apply nl.
|
|
* apply nl.
|
|
- simpl. intros x y P Q.
|
|
cbn.
|
|
rewrite P.
|
|
rewrite Q.
|
|
rewrite <- assoc.
|
|
rewrite (assoc (comprehension ψ x)).
|
|
rewrite (comm (comprehension ψ x) (comprehension ϕ y)).
|
|
rewrite <- assoc.
|
|
rewrite <- assoc.
|
|
reflexivity.
|
|
Defined.
|
|
|
|
Theorem comprehension_subset : forall ϕ (X : FSet A),
|
|
U (comprehension ϕ X) X = X.
|
|
Proof.
|
|
intros ϕ.
|
|
hrecursion; try (intros ; apply set_path2) ; cbn.
|
|
- apply nl.
|
|
- intro a.
|
|
destruct (ϕ a).
|
|
* apply union_idem.
|
|
* apply nl.
|
|
- intros X Y P Q.
|
|
rewrite assoc.
|
|
rewrite <- (assoc (comprehension ϕ X) (comprehension ϕ Y) X).
|
|
rewrite (comm (comprehension ϕ Y) X).
|
|
rewrite assoc.
|
|
rewrite P.
|
|
rewrite <- assoc.
|
|
rewrite Q.
|
|
reflexivity.
|
|
Defined.
|
|
|
|
(** intersection properties *)
|
|
Lemma intersection_0l: forall X: FSet A, intersection E X = E.
|
|
Proof.
|
|
hinduction;
|
|
try (intros ; apply set_path2).
|
|
- reflexivity.
|
|
- intro a.
|
|
reflexivity.
|
|
- unfold intersection.
|
|
intros x y P Q.
|
|
cbn.
|
|
rewrite P.
|
|
rewrite Q.
|
|
apply nl.
|
|
Defined.
|
|
|
|
Lemma intersection_0r (X: FSet A): intersection X E = E.
|
|
Proof. exact idpath. Defined.
|
|
|
|
Theorem intersection_La : forall (a : A) (X : FSet A),
|
|
intersection (L a) X = if isIn a X then L a else E.
|
|
Proof.
|
|
intro a.
|
|
hinduction; try (intros ; apply set_path2).
|
|
- reflexivity.
|
|
- intro b.
|
|
cbn.
|
|
destruct (dec (a = b)) as [p|np].
|
|
* rewrite p.
|
|
destruct (dec (b = b)) as [|nb]; [reflexivity|].
|
|
by contradiction nb.
|
|
* destruct (dec (b = a)); [|reflexivity].
|
|
by contradiction np.
|
|
- unfold intersection.
|
|
intros x y P Q.
|
|
cbn.
|
|
rewrite P.
|
|
rewrite Q.
|
|
destruct (isIn a x) ; destruct (isIn a y).
|
|
* apply idem.
|
|
* apply nr.
|
|
* apply nl.
|
|
* apply nl.
|
|
Defined.
|
|
|
|
Lemma intersection_comm X Y: intersection X Y = intersection Y X.
|
|
Proof.
|
|
hrecursion X; try (intros; apply set_path2).
|
|
- cbn. unfold intersection. apply comprehension_false.
|
|
- cbn. unfold intersection. intros a.
|
|
hrecursion Y; try (intros; apply set_path2).
|
|
+ cbn. reflexivity.
|
|
+ cbn. intros b.
|
|
destruct (dec (a = b)) as [pa|npa].
|
|
* rewrite pa.
|
|
destruct (dec (b = b)) as [|nb]; [reflexivity|].
|
|
by contradiction nb.
|
|
* destruct (dec (b = a)) as [pb|]; [|reflexivity].
|
|
by contradiction npa.
|
|
+ cbn -[isIn]. intros Y1 Y2 IH1 IH2.
|
|
rewrite IH1.
|
|
rewrite IH2.
|
|
symmetry.
|
|
apply (comprehension_or (fun a => isIn a Y1) (fun a => isIn a Y2) (L a)).
|
|
- intros X1 X2 IH1 IH2.
|
|
cbn.
|
|
unfold intersection in *.
|
|
rewrite <- IH1.
|
|
rewrite <- IH2.
|
|
apply comprehension_or.
|
|
Defined.
|
|
|
|
Theorem intersection_idem : forall (X : FSet A), intersection X X = X.
|
|
Proof.
|
|
hinduction; try (intros ; apply set_path2).
|
|
- reflexivity.
|
|
- intro a.
|
|
destruct (dec (a = a)).
|
|
* reflexivity.
|
|
* contradiction (n idpath).
|
|
- intros X Y IHX IHY.
|
|
f_ap;
|
|
unfold intersection in *.
|
|
+ transitivity (U (comprehension (fun a => isIn a X) X) (comprehension (fun a => isIn a Y) X)).
|
|
apply comprehension_or.
|
|
rewrite IHX.
|
|
rewrite (comm X).
|
|
apply comprehension_subset.
|
|
+ transitivity (U (comprehension (fun a => isIn a X) Y) (comprehension (fun a => isIn a Y) Y)).
|
|
apply comprehension_or.
|
|
rewrite IHY.
|
|
apply comprehension_subset.
|
|
Defined.
|
|
|
|
(** assorted lattice laws *)
|
|
Lemma distributive_La (z : FSet A) (a : A) : forall Y : FSet A,
|
|
intersection (U (L a) z) Y = U (intersection (L a) Y) (intersection z Y).
|
|
Proof.
|
|
hinduction; try (intros ; apply set_path2) ; cbn.
|
|
- symmetry ; apply nl.
|
|
- intros b.
|
|
destruct (dec (b = a)) ; cbn.
|
|
* destruct (isIn b z).
|
|
+ rewrite union_idem.
|
|
reflexivity.
|
|
+ rewrite nr.
|
|
reflexivity.
|
|
* rewrite nl ; reflexivity.
|
|
- intros X1 X2 P Q.
|
|
rewrite P. rewrite Q.
|
|
rewrite <- assoc.
|
|
rewrite (comm (comprehension (fun a0 : A => isIn a0 z) X1)).
|
|
rewrite <- assoc.
|
|
rewrite assoc.
|
|
rewrite (comm (comprehension (fun a0 : A => isIn a0 z) X2)).
|
|
reflexivity.
|
|
Defined.
|
|
|
|
Theorem distributive_intersection_U (X1 X2 Y : FSet A) :
|
|
intersection (U X1 X2) Y = U (intersection X1 Y) (intersection X2 Y).
|
|
Proof.
|
|
hinduction X1; try (intros ; apply set_path2) ; cbn.
|
|
- rewrite intersection_0l.
|
|
rewrite nl.
|
|
rewrite nl.
|
|
reflexivity.
|
|
- intro a.
|
|
rewrite intersection_La.
|
|
rewrite distributive_La.
|
|
rewrite intersection_La.
|
|
reflexivity.
|
|
- intros Z1 Z2 P Q.
|
|
unfold intersection in *.
|
|
cbn.
|
|
rewrite comprehension_or.
|
|
rewrite comprehension_or.
|
|
reflexivity.
|
|
Defined.
|
|
|
|
Theorem intersection_isIn : forall a (x y: FSet A),
|
|
isIn a (intersection x y) = andb (isIn a x) (isIn a y).
|
|
Proof.
|
|
intros a x y.
|
|
hinduction x; try (intros ; apply set_path2) ; cbn.
|
|
- rewrite intersection_0l.
|
|
reflexivity.
|
|
- intro b.
|
|
rewrite intersection_La.
|
|
destruct (dec (a = b)) ; cbn.
|
|
* rewrite p.
|
|
destruct (isIn b y).
|
|
+ cbn.
|
|
destruct (dec (b = b)); [reflexivity|].
|
|
by contradiction n.
|
|
+ reflexivity.
|
|
* destruct (isIn b y).
|
|
+ cbn.
|
|
destruct (dec (a = b)); [|reflexivity].
|
|
by contradiction n.
|
|
+ reflexivity.
|
|
- intros X1 X2 P Q.
|
|
rewrite distributive_intersection_U.
|
|
cbn.
|
|
rewrite P.
|
|
rewrite Q.
|
|
destruct (isIn a X1) ; destruct (isIn a X2) ; destruct (isIn a y) ;
|
|
reflexivity.
|
|
Defined.
|
|
|
|
Theorem intersection_assoc (X Y Z: FSet A) :
|
|
intersection X (intersection Y Z) = intersection (intersection X Y) Z.
|
|
Proof.
|
|
hinduction X; try (intros ; apply set_path2).
|
|
- cbn.
|
|
rewrite intersection_0l.
|
|
rewrite intersection_0l.
|
|
rewrite intersection_0l.
|
|
reflexivity.
|
|
- intros a.
|
|
cbn.
|
|
rewrite intersection_La.
|
|
rewrite intersection_La.
|
|
rewrite intersection_isIn.
|
|
destruct (isIn a Y).
|
|
* rewrite intersection_La.
|
|
destruct (isIn a Z).
|
|
+ reflexivity.
|
|
+ reflexivity.
|
|
* rewrite intersection_0l.
|
|
reflexivity.
|
|
- unfold intersection. cbn.
|
|
intros X1 X2 P Q.
|
|
rewrite comprehension_or.
|
|
rewrite P.
|
|
rewrite Q.
|
|
rewrite comprehension_or.
|
|
cbn.
|
|
rewrite comprehension_or.
|
|
reflexivity.
|
|
Defined.
|
|
|
|
Theorem comprehension_all : forall (X : FSet A),
|
|
comprehension (fun a => isIn a X) X = X.
|
|
Proof.
|
|
hinduction; try (intros ; apply set_path2).
|
|
- reflexivity.
|
|
- intro a.
|
|
destruct (dec (a = a)).
|
|
* reflexivity.
|
|
* contradiction (n idpath).
|
|
- intros X1 X2 P Q.
|
|
f_ap; (etransitivity; [ apply comprehension_or |]).
|
|
rewrite P. rewrite (comm X1).
|
|
apply comprehension_subset.
|
|
|
|
rewrite Q.
|
|
apply comprehension_subset.
|
|
Defined.
|
|
|
|
|
|
Theorem distributive_U_int (X1 X2 Y : FSet A) :
|
|
U (intersection X1 X2) Y = intersection (U X1 Y) (U X2 Y).
|
|
Proof.
|
|
hinduction X1; try (intros ; apply set_path2) ; cbn.
|
|
- rewrite intersection_0l.
|
|
rewrite nl.
|
|
unfold intersection.
|
|
rewrite comprehension_all.
|
|
pose (intersection_comm Y X2).
|
|
unfold intersection in p.
|
|
rewrite p.
|
|
rewrite comprehension_subset.
|
|
reflexivity.
|
|
- intros.
|
|
assert (Y = intersection (U (L a) Y) Y) as HY.
|
|
{ unfold intersection. symmetry.
|
|
transitivity (U (comprehension (fun x => isIn x (L a)) Y) (comprehension (fun x => isIn x Y) Y)).
|
|
apply comprehension_or.
|
|
rewrite comprehension_all.
|
|
apply comprehension_subset. }
|
|
rewrite <- HY.
|
|
admit.
|
|
- unfold intersection.
|
|
intros Z1 Z2 P Q.
|
|
rewrite comprehension_or.
|
|
assert (U (U (comprehension (fun a : A => isIn a Z1) X2)
|
|
(comprehension (fun a : A => isIn a Z2) X2))
|
|
Y = U (U (comprehension (fun a : A => isIn a Z1) X2)
|
|
(comprehension (fun a : A => isIn a Z2) X2))
|
|
(U Y Y)).
|
|
rewrite (union_idem Y).
|
|
reflexivity.
|
|
rewrite X.
|
|
rewrite <- assoc.
|
|
rewrite (assoc (comprehension (fun a : A => isIn a Z2) X2)).
|
|
rewrite Q.
|
|
cbn.
|
|
rewrite
|
|
(comm (U (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2)
|
|
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y)) Y).
|
|
rewrite assoc.
|
|
rewrite P.
|
|
rewrite <- assoc. cbn.
|
|
rewrite (assoc (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
|
|
rewrite (comm (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
|
|
rewrite <- assoc.
|
|
rewrite assoc.
|
|
enough (C : (U (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) X2)
|
|
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2))
|
|
= (comprehension (fun a : A => (isIn a Z1 || isIn a Z2 || isIn a Y)%Bool) X2)).
|
|
rewrite C.
|
|
enough (D : (U (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)
|
|
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y))
|
|
= (comprehension (fun a : A => (isIn a Z1 || isIn a Z2 || isIn a Y)%Bool) Y)).
|
|
rewrite D.
|
|
reflexivity.
|
|
* repeat (rewrite comprehension_or).
|
|
rewrite <- assoc.
|
|
rewrite (comm (comprehension (fun a : A => isIn a Y) Y)).
|
|
rewrite <- (assoc (comprehension (fun a : A => isIn a Z2) Y)).
|
|
rewrite union_idem.
|
|
rewrite assoc.
|
|
reflexivity.
|
|
* repeat (rewrite comprehension_or).
|
|
rewrite <- assoc.
|
|
rewrite (comm (comprehension (fun a : A => isIn a Y) X2)).
|
|
rewrite <- (assoc (comprehension (fun a : A => isIn a Z2) X2)).
|
|
rewrite union_idem.
|
|
rewrite assoc.
|
|
reflexivity.
|
|
Admitted.
|
|
|
|
Theorem absorb_0 (X Y : FSet A) : U X (intersection X Y) = X.
|
|
Proof.
|
|
hinduction X; try (intros ; apply set_path2) ; cbn.
|
|
- rewrite nl.
|
|
apply intersection_0l.
|
|
- intro a.
|
|
rewrite intersection_La.
|
|
destruct (isIn a Y).
|
|
* apply union_idem.
|
|
* apply nr.
|
|
- intros X1 X2 P Q.
|
|
rewrite distributive_intersection_U.
|
|
rewrite <- assoc.
|
|
rewrite (comm X2).
|
|
rewrite assoc.
|
|
rewrite assoc.
|
|
rewrite P.
|
|
rewrite <- assoc.
|
|
rewrite (comm _ X2).
|
|
rewrite Q.
|
|
reflexivity.
|
|
Defined.
|
|
|
|
Theorem absorb_1 (X Y : FSet A) : intersection X (U X Y) = X.
|
|
Proof.
|
|
hrecursion X; try (intros ; apply set_path2).
|
|
- cbn.
|
|
rewrite nl.
|
|
apply comprehension_false.
|
|
- intro a.
|
|
rewrite intersection_La.
|
|
destruct (dec (a = a)).
|
|
* destruct (isIn a Y).
|
|
+ apply union_idem.
|
|
+ apply nr.
|
|
* contradiction (n idpath).
|
|
- intros X1 X2 P Q.
|
|
cbn in *.
|
|
symmetry.
|
|
rewrite <- P.
|
|
rewrite <- Q.
|
|
Admitted.
|
|
|
|
<<<<<<< HEAD
|
|
Theorem union_isIn (X Y : FSet A) (a : A) : isIn a (U X Y) = orb (isIn a X) (isIn a Y).
|
|
Proof.
|
|
reflexivity.
|
|
Defined.
|
|
|
|
|
|
=======
|
|
|
|
(* Properties about subset relation. *)
|
|
Lemma subset_union `{Funext} (X Y : FSet A) :
|
|
subset X Y = true -> U X Y = Y.
|
|
Proof.
|
|
hinduction X; try (intros; apply path_forall; intro; apply set_path2).
|
|
- intros. apply nl.
|
|
- intros a. hinduction Y;
|
|
try (intros; apply path_forall; intro; apply set_path2).
|
|
+ intro. contradiction (false_ne_true).
|
|
+ intros. destruct (dec (a = a0)).
|
|
rewrite p; apply idem.
|
|
contradiction (false_ne_true).
|
|
+ intros X1 X2 IH1 IH2.
|
|
intro Ho.
|
|
destruct (isIn a X1);
|
|
destruct (isIn a X2).
|
|
* specialize (IH1 idpath).
|
|
rewrite assoc. f_ap.
|
|
* specialize (IH1 idpath).
|
|
rewrite assoc. f_ap.
|
|
* specialize (IH2 idpath).
|
|
rewrite (comm X1 X2).
|
|
rewrite assoc. f_ap.
|
|
* contradiction (false_ne_true).
|
|
- intros X1 X2 IH1 IH2 G.
|
|
destruct (subset X1 Y);
|
|
destruct (subset X2 Y).
|
|
* specialize (IH1 idpath).
|
|
specialize (IH2 idpath).
|
|
rewrite <- assoc. rewrite IH2. apply IH1.
|
|
* contradiction (false_ne_true).
|
|
* contradiction (false_ne_true).
|
|
* contradiction (false_ne_true).
|
|
Defined.
|
|
|
|
Lemma eq1 (X Y : FSet A) : X = Y <~> (U Y X = X) * (U X Y = Y).
|
|
Proof.
|
|
unshelve eapply BuildEquiv.
|
|
{ intro H. rewrite H. split; apply union_idem. }
|
|
unshelve esplit.
|
|
{ intros [H1 H2]. etransitivity. apply H1^.
|
|
rewrite comm. apply H2. }
|
|
intro; apply path_prod; apply set_path2.
|
|
all: intro; apply set_path2.
|
|
Defined.
|
|
|
|
|
|
Lemma subset_union_l `{Funext} X :
|
|
forall Y, subset X (U X Y) = true.
|
|
hinduction X;
|
|
try (intros; apply path_forall; intro; apply set_path2).
|
|
- reflexivity.
|
|
- intros a Y. destruct (dec (a = a)).
|
|
* reflexivity.
|
|
* by contradiction n.
|
|
- intros X1 X2 HX1 HX2 Y.
|
|
enough (subset X1 (U (U X1 X2) Y) = true).
|
|
enough (subset X2 (U (U X1 X2) Y) = true).
|
|
rewrite X. rewrite X0. reflexivity.
|
|
{ rewrite (comm X1 X2).
|
|
rewrite <- (assoc X2 X1 Y).
|
|
apply (HX2 (U X1 Y)). }
|
|
{ rewrite <- (assoc X1 X2 Y). apply (HX1 (U X2 Y)). }
|
|
Defined.
|
|
|
|
Lemma subset_union_equiv `{Funext}
|
|
: forall X Y : FSet A, subset X Y = true <~> U X Y = Y.
|
|
Proof.
|
|
intros X Y.
|
|
unshelve eapply BuildEquiv.
|
|
apply subset_union.
|
|
unshelve esplit.
|
|
{ intros HXY. rewrite <- HXY. clear HXY.
|
|
apply subset_union_l. }
|
|
all: intro; apply set_path2.
|
|
Defined.
|
|
|
|
Lemma eq_subset `{Funext} (X Y : FSet A) :
|
|
X = Y <~> ((subset Y X = true) * (subset X Y = true)).
|
|
Proof.
|
|
transitivity ((U Y X = X) * (U X Y = Y)).
|
|
apply eq1.
|
|
symmetry.
|
|
eapply equiv_functor_prod'; apply subset_union_equiv.
|
|
Defined.
|
|
|
|
Lemma subset_isIn `{FE : Funext} (X Y : FSet A) :
|
|
(forall (a : A), isIn a X = true -> isIn a Y = true)
|
|
<-> (subset X Y = true).
|
|
Proof.
|
|
split.
|
|
- hinduction X ; try (intros ; apply path_forall ; intro ; apply set_path2).
|
|
* intros ; reflexivity.
|
|
* intros a H.
|
|
apply H.
|
|
destruct (dec (a = a)).
|
|
+ reflexivity.
|
|
+ contradiction (n idpath).
|
|
* intros X1 X2 H1 H2 H.
|
|
enough (subset X1 Y = true).
|
|
rewrite X.
|
|
enough (subset X2 Y = true).
|
|
rewrite X0.
|
|
reflexivity.
|
|
+ apply H2.
|
|
intros a Ha.
|
|
apply H.
|
|
rewrite Ha.
|
|
destruct (isIn a X1) ; reflexivity.
|
|
+ apply H1.
|
|
intros a Ha.
|
|
apply H.
|
|
rewrite Ha.
|
|
reflexivity.
|
|
- hinduction X .
|
|
* intros. contradiction (false_ne_true X0).
|
|
* intros b H a.
|
|
destruct (dec (a = b)).
|
|
+ intros ; rewrite p ; apply H.
|
|
+ intros X ; contradiction (false_ne_true X).
|
|
* intros X1 X2.
|
|
intros IH1 IH2 H1 a H2.
|
|
destruct (subset X1 Y) ; destruct (subset X2 Y);
|
|
cbv in H1; try by contradiction false_ne_true.
|
|
specialize (IH1 idpath a). specialize (IH2 idpath a).
|
|
destruct (isIn a X1); destruct (isIn a X2);
|
|
cbv in H2; try by contradiction false_ne_true.
|
|
by apply IH1.
|
|
by apply IH1.
|
|
by apply IH2.
|
|
* repeat (intro; intros; apply path_forall).
|
|
intros; intro; intros; apply set_path2.
|
|
* repeat (intro; intros; apply path_forall).
|
|
intros; intro; intros; apply set_path2.
|
|
* repeat (intro; intros; apply path_forall).
|
|
intros; intro; intros; apply set_path2.
|
|
* repeat (intro; intros; apply path_forall).
|
|
intros; intro; intros; apply set_path2.
|
|
* repeat (intro; intros; apply path_forall);
|
|
intros; intro; intros; apply set_path2.
|
|
Defined.
|
|
|
|
Theorem fset_ext `{Funext} (X Y : FSet A) :
|
|
X = Y <~> (forall (a : A), isIn a X = isIn a Y).
|
|
Proof.
|
|
etransitivity. apply eq_subset.
|
|
transitivity
|
|
((forall a, isIn a Y = true -> isIn a X = true)
|
|
*(forall a, isIn a X = true -> isIn a Y = true)).
|
|
- eapply equiv_functor_prod'. admit. admit.
|
|
- eapply equiv_functor_prod'.
|
|
Admitted.
|
|
|
|
End properties.
|