HITs-Examples/int/Integers.v

747 lines
21 KiB
Coq

Require Import HoTT HitTactics.
From HoTTClasses Require Import interfaces.abstract_algebra tactics.ring_tac theory.rings.
Module Export Ints.
Private Inductive Z : Type :=
| zero_Z : Z
| succ : Z -> Z
| pred : Z -> Z.
Axiom inv1 : forall n : Z, n = pred(succ n).
Axiom inv2 : forall n : Z, n = succ(pred n).
Axiom ZisSet : IsHSet Z.
Section Z_induction.
Variable (P : Z -> Type)
(H : forall n, IsHSet (P n))
(a : P zero_Z)
(s : forall (n : Z), P n -> P (succ n))
(p : forall (n : Z), P n -> P (pred n))
(i1 : forall (n : Z) (m : P n), (inv1 n) # m = p (succ n) (s (n) m))
(i2 : forall (n : Z) (m : P n), (inv2 n) # m = s (pred n) (p (n) m)).
Fixpoint Z_ind
(x : Z)
{struct x}
: P x
:=
(match x return _ -> _ -> _ -> P x with
| zero_Z => fun _ _ _ => a
| succ n => fun _ _ _ => s n (Z_ind n)
| pred n => fun _ _ _ => p n (Z_ind n)
end) i1 i2 H.
Axiom Z_ind_beta_inv1 : forall (n : Z), apD Z_ind (inv1 n) = i1 n (Z_ind n).
Axiom Z_ind_beta_inv2 : forall (n : Z), apD Z_ind (inv2 n) = i2 n (Z_ind n).
End Z_induction.
Section Z_recursion.
Variable (P : Type)
(H : IsHSet P)
(a : P)
(s : P -> P)
(p : P -> P)
(i1 : forall (m : P), m = p(s m))
(i2 : forall (m : P), m = s(p m)).
Definition Z_rec : Z -> P.
Proof.
simple refine (Z_ind _ _ _ _ _ _ _) ; simpl.
- apply a.
- intro ; apply s.
- intro ; apply p.
- intros.
refine (transport_const _ _ @ (i1 _)).
- intros.
refine (transport_const _ _ @ (i2 _)).
Defined.
Definition Z_rec_beta_inv1 (n : Z) : ap Z_rec (inv1 n) = i1 (Z_rec n).
Proof.
unfold Z_rec.
eapply (cancelL (transport_const (inv1 n) _)).
simple refine ((apD_const _ _)^ @ _).
apply Z_ind_beta_inv1.
Defined.
Definition Z_rec_beta_inv2 (n : Z) : ap Z_rec (inv2 n) = i2 (Z_rec n).
Proof.
unfold Z_rec.
eapply (cancelL (transport_const (inv2 n) _)).
simple refine ((apD_const _ _)^ @ _).
apply Z_ind_beta_inv2.
Defined.
End Z_recursion.
Instance Z_recursion : HitRecursion Z :=
{
indTy := _; recTy := _;
H_inductor := Z_ind; H_recursor := Z_rec }.
End Ints.
Section ring_Z.
Fixpoint nat_to_Z (n : nat) : Z :=
match n with
| 0 => zero_Z
| S m => succ (nat_to_Z m)
end.
Definition plus : Z -> Z -> Z := fun x => Z_rec Z _ x succ pred inv1 inv2.
Lemma plus_0n : forall x, plus zero_Z x = x.
Proof.
hinduction ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros y Hy.
apply (ap succ Hy).
- intros y Hy.
apply (ap pred Hy).
Defined.
Definition plus_n0 x : plus x zero_Z = x := idpath x.
Lemma plus_Sn x : forall y, plus (succ x) y = succ(plus x y).
Proof.
hinduction ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros y Hy.
apply (ap succ Hy).
- intros y Hy.
apply (ap pred Hy @ (inv1 (plus x y))^ @ inv2 (plus x y)).
Defined.
Definition plus_nS x y : plus x (succ y) = succ(plus x y) := idpath.
Lemma plus_Pn x : forall y, plus (pred x) y = pred (plus x y).
Proof.
hinduction ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros y Hy.
apply (ap succ Hy @ (inv2 (plus x y))^ @ inv1 (plus x y)).
- intros y Hy.
apply (ap pred Hy).
Defined.
Definition plus_nP x y : plus x (pred y) = pred(plus x y) := idpath.
Lemma plus_comm x : forall y : Z, plus x y = plus y x.
Proof.
hinduction ; simpl ; try (intros ; apply set_path2).
- apply (plus_0n x)^.
- intros n H1.
apply (ap succ H1 @ (plus_Sn _ _)^).
- intros n H1.
apply (ap pred H1 @ (plus_Pn _ _)^).
Defined.
Lemma plus_assoc x y : forall z : Z, plus (plus x y) z = plus x (plus y z).
Proof.
hinduction ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sz HSz.
refine (ap succ HSz).
- intros Pz HPz.
apply (ap pred HPz).
Defined.
Definition negate : Z -> Z := Z_rec Z _ zero_Z pred succ inv2 inv1.
Lemma negate_negate : forall x, negate(negate x) = x.
Proof.
hinduction ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sy HSy.
apply (ap succ HSy).
- intros Py HPy.
apply (ap pred HPy).
Defined.
Definition minus x y : Z := plus x (negate y).
Lemma plus_negatex : forall x, plus x (negate x) = zero_Z.
Proof.
hinduction ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sx HSx.
refine (ap pred (plus_Sn _ _) @ _).
refine ((inv1 _)^ @ HSx).
- intros Px HPx.
refine (ap succ (plus_Pn _ _) @ _).
refine ((inv2 _)^ @ HPx).
Defined.
Definition plus_xnegate x : plus (negate x) x = zero_Z :=
plus_comm (negate x) x @ plus_negatex x.
Lemma plus_negate x : forall y, plus (negate x) (negate y) = negate (plus x y).
Proof.
hinduction ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sy HSy.
apply (ap pred HSy).
- intros Py HPy.
apply (ap succ HPy).
Defined.
Definition times (x : Z) : Z -> Z.
Proof.
hrecursion.
- apply zero_Z.
- apply (plus x).
- apply (fun z => minus z x).
- intros ; unfold minus.
symmetry.
refine (ap (fun z => plus z (negate x)) (plus_comm x m) @ _).
refine (plus_assoc _ _ _ @ _).
refine (ap (fun z => plus m z) (plus_negatex _) @ _).
apply plus_n0.
- intros ; unfold minus.
symmetry.
refine (ap (fun z => plus x z) (plus_comm _ _) @ _).
refine ((plus_assoc _ _ _)^ @ _).
refine (ap (fun z => plus z m) (plus_negatex _) @ _).
apply plus_0n.
Defined.
Lemma times_0n : forall x, times zero_Z x = zero_Z.
Proof.
hinduction ; try (intros ; apply set_path2) ; simpl.
- reflexivity.
- intros Sx HSx.
apply (plus_0n _ @ HSx).
- intros Px HPx.
unfold minus ; simpl ; apply HPx.
Defined.
Definition times_n0 n : times n zero_Z = zero_Z := idpath.
Lemma times_Sn x : forall y, times (succ x) y = plus y (times x y).
Proof.
hinduction ; try (intros ; apply set_path2) ; simpl.
- reflexivity.
- intros Sy HSy.
refine (ap (fun z => plus (succ x) z) HSy @ _).
refine (plus_Sn _ _ @ _).
refine (_ @ (plus_Sn _ _)^).
refine (ap succ _).
refine ((plus_assoc _ _ _)^ @ _).
refine (_ @ plus_assoc _ _ _).
refine (ap (fun z => plus z (times x Sy)) (plus_comm _ _)).
- intros Py HPy ; unfold minus.
refine (ap (fun z => plus z (negate (succ x))) HPy @ _) ; simpl.
refine (_ @ (plus_Pn _ _)^).
refine (ap pred _).
apply plus_assoc.
Defined.
Definition times_nS x y : times x (succ y) = plus x (times x y) := idpath.
Lemma times_1n x : times (succ zero_Z) x = x.
Proof.
refine (times_Sn _ _ @ _).
refine (ap (plus x) (times_0n _) @ (plus_n0 x)).
Defined.
Lemma times_Pn x : forall y, times (pred x) y = minus (times x y) y.
Proof.
hinduction ; try (intros ; apply set_path2) ; simpl.
- reflexivity.
- intros Sy HSy.
refine (ap (fun z => plus (pred x) z) HSy @ _) ; unfold minus.
refine (plus_Pn _ _ @ _) ; simpl.
refine (ap pred _).
apply (plus_assoc _ _ _)^.
- intros Py HPy.
refine (ap (fun z => minus z (pred x)) HPy @ _) ; unfold minus ; simpl.
refine (ap succ _).
refine (plus_assoc _ _ _ @ _).
refine (_ @ (plus_assoc _ _ _)^).
refine (ap (fun z => plus (times x Py) z) (plus_comm _ _)).
Defined.
Definition times_nP x y : times x (pred y) = minus (times x y) x := idpath.
Lemma times_comm x : forall y, times x y = times y x.
Proof.
hinduction ; simpl ; try (intros ; apply set_path2).
- apply (times_0n x)^.
- intros Sx HSx.
apply (ap (fun z => plus x z) HSx @ (times_Sn _ _)^).
- intros Py HPy.
apply (ap (fun z => minus z x) HPy @ (times_Pn _ _)^).
Defined.
Lemma times_negatex x : forall y, times x (negate y) = negate (times x y).
Proof.
hinduction ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sy HSy.
unfold minus.
refine (ap (fun z => plus z (negate x)) HSy @ _).
refine (plus_negate _ _ @ _).
apply (ap negate (plus_comm _ _)).
- intros Py HPy.
refine (ap (plus x) HPy @ _).
unfold minus.
refine (ap (fun z => plus z (negate (times x Py))) (negate_negate _)^ @ _).
refine (plus_negate _ _ @ _).
refine (ap negate (plus_comm _ _)).
Defined.
Definition times_xnegate x y : times (negate x) y = negate (times x y) :=
times_comm (negate x) y @ times_negatex y x @ ap negate (times_comm y x).
Lemma dist_times_plus x y : forall z, times x (plus y z) = plus (times x y) (times x z).
Proof.
hinduction ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sz HSz.
refine (ap (plus x) HSz @ _).
refine ((plus_assoc _ _ _)^ @ _).
refine (_ @ plus_assoc _ _ _).
refine (ap (fun z => plus z (times x Sz)) (plus_comm _ _)).
- intros Pz HPz.
refine (ap (fun z => minus z x) HPz @ _).
unfold minus ; simpl.
apply plus_assoc.
Defined.
Lemma dist_plus_times x y z : times (plus x y) z = plus (times x z) (times y z).
Proof.
refine (times_comm _ _ @ _).
refine (dist_times_plus _ _ _ @ _).
refine (ap (plus (times z x)) (times_comm _ _) @ _).
apply (ap (fun a => plus a (times y z)) (times_comm _ _)).
Defined.
Lemma times_assoc x y : forall z, times (times x y) z = times x (times y z).
Proof.
hinduction ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sz HSz.
refine (ap (plus (times x y)) HSz @ _).
symmetry ; apply dist_times_plus.
- intros Pz HPz.
refine (ap (fun z => minus z (times x y)) HPz @ _).
unfold minus.
refine (_ @ (dist_times_plus _ _ _)^).
refine (ap (plus (times x (times y Pz))) _).
apply (times_negatex _ _)^.
Defined.
Global Instance: Plus Z := plus.
Global Instance: Mult Z := times.
Global Instance: Zero Z := zero_Z.
Global Instance: One Z := succ zero.
Global Instance: Negate Z := negate.
Global Instance ring_Z : Ring Z.
Proof.
repeat split ; try (apply _).
- intros x y z. symmetry. apply plus_assoc.
- intro x. apply plus_0n.
- intro x. apply plus_xnegate.
- intro x. apply plus_negatex.
- intros x y. apply plus_comm.
- intros x y z. symmetry. apply times_assoc.
- intros x. apply times_1n.
- intros x y. apply times_comm.
- intros x y z.
apply dist_times_plus.
Defined.
End ring_Z.
Section initial_Z.
Variable A : Type.
Context `{Ring A}.
Definition ZtoA : Z -> A.
Proof.
hinduction ; simpl.
- apply zero.
- apply (Aplus one).
- apply (Aplus (Anegate one)).
- intros.
symmetry.
refine (associativity _ _ _ @ _).
refine (ap (fun z => z & m) (left_inverse _) @ _).
ring_with_nat.
- intros.
symmetry.
refine (associativity _ _ _ @ _).
refine (ap (fun z => z & m) (right_inverse _) @ _).
ring_with_nat.
Defined.
Lemma ZtoAplus x : forall y, ZtoA (plus x y) = Aplus (ZtoA x) (ZtoA y).
Proof.
hinduction ; simpl ; try (intros ; apply set_path2).
- ring_with_nat.
- intros n X.
refine (ap (Aplus Aone) X @ _).
ring_with_nat.
- intros.
refine (ap (Aplus (Anegate Aone)) X @ _).
ring_with_nat.
Defined.
Lemma ZtoAnegate : forall x, ZtoA (negate x) = Anegate (ZtoA x).
Proof.
hinduction ; simpl ; try (intros ; apply set_path2).
- symmetry.
apply negate_0.
- intros n X.
refine (ap (Aplus (Anegate Aone)) X @ _).
symmetry.
apply negate_plus_distr.
- intros n X.
refine (ap (Aplus Aone) X @ _).
refine (ap (fun z => Aplus z (Anegate (ZtoA n))) (negate_involutive Aone)^ @ _).
symmetry.
apply negate_plus_distr.
Defined.
Instance: SemiRingPreserving ZtoA.
Proof.
repeat split.
- intro x.
hinduction ; simpl ; try (intros ; apply set_path2).
* ring_with_nat.
* intros y X.
refine (ap (Aplus Aone) X @ _).
ring_with_nat.
* intros y X.
refine (ap (Aplus (Anegate Aone)) X @ _).
ring_with_nat.
- intro x.
hinduction ; simpl ; try (intros ; apply set_path2).
* ring_with_nat.
* intros y X ; cbn.
refine (ZtoAplus x _ @ _).
refine (ap (Aplus (ZtoA x)) X @ _).
ring_with_nat.
* intros y X.
cbn.
refine (ZtoAplus _ _ @ _).
refine (ap (Aplus _) (ZtoAnegate _) @ _).
refine (ap (fun z => Aplus z _) X @ _).
refine (_ @ ap (fun z => ZtoA x & z) (commutativity (ZtoA y) (Anegate Aone))).
refine (_ @ (distribute_l (ZtoA x) _ _)^).
refine (ap (Aplus (ZtoA x & ZtoA y)) _).
refine (_ @ commutativity _ (ZtoA x)).
apply negate_mult.
- unfold UnitPreserving ; compute.
apply H.
Defined.
Theorem uniqueness (f : Z -> A) {H0 : SemiRingPreserving f} : forall x, ZtoA x = f x.
Proof.
assert (f (succ zero_Z) = Aone) as fone.
{ apply H0. }
assert (forall x y, f(plus x y) = Aplus (f x) (f y)) as fplus.
{ apply H0. }
compute-[times plus ZtoA] in *.
hinduction ; simpl ; try (intros ; apply set_path2).
- symmetry. apply H0.
- intros x Hx.
refine (ap (Aplus _) Hx @ _).
refine (ap (fun z => Aplus z (f x)) fone^ @ _).
refine ((fplus _ _)^ @ _).
refine (ap f _).
refine (plus_Sn _ _ @ _).
refine (ap succ (plus_0n _)).
- intros x Hx.
refine (ap (Aplus _) Hx @ _).
refine (ap (fun z => Aplus (Anegate z) (f x)) fone^ @ _).
refine (ap (fun z => Aplus z (f x)) _ @ _).
* symmetry. apply preserves_negate.
* refine ((fplus _ _)^ @ _).
refine (ap f _) ; cbn.
refine (plus_Pn _ _ @ _).
apply (ap pred (plus_0n x)).
Defined.
End initial_Z.
Module Export AltInts.
Private Inductive Z' : Type0 :=
| positive : nat -> Z'
| negative : nat -> Z'.
Axiom path : positive 0 = negative 0.
Section AltIntsInd.
Variable (P : Z' -> Type)
(po : forall (x : nat), P (positive x))
(ne : forall (x : nat), P (negative x))
(i : path # (po 0) = ne 0).
Fixpoint Z'_ind (x : Z') {struct x} : P x
:=
(match x return _ -> P x with
| positive n => fun _ => po n
| negative n => fun _ => ne n
end) i.
Axiom Z'_ind_beta_path : apD Z'_ind path = i.
End AltIntsInd.
Section AltIntsRec.
Variable (P : Type)
(po : nat -> P)
(pn : nat -> P)
(i : po 0 = pn 0).
Definition Z'_rec : Z' -> P.
Proof.
simple refine (Z'_ind _ _ _ _) ; simpl.
- apply po.
- apply pn.
- refine (transport_const _ _ @ i).
Defined.
Definition Z'_rec_beta_path : ap Z'_rec path = i.
Proof.
unfold Z_rec.
eapply (cancelL (transport_const path _)).
simple refine ((apD_const _ _)^ @ _).
apply Z'_ind_beta_path.
Defined.
End AltIntsRec.
Instance Z'_recursion : HitRecursion Z' :=
{
indTy := _; recTy := _;
H_inductor := Z'_ind; H_recursor := Z'_rec
}.
End AltInts.
Section Isomorphic.
Definition succ_Z' : Z' -> Z'.
Proof.
simple refine (Z'_rec _ _ _ _).
- apply (fun n => positive (S n)).
- induction 1 as [ | n].
* apply (positive 1).
* apply (negative n).
- reflexivity.
Defined.
Definition pred_Z' : Z' -> Z'.
Proof.
simple refine (Z'_rec _ _ _ _).
- induction 1 as [ | n].
* apply (negative 1).
* apply (positive n).
- intro n.
apply (negative (S n)).
- reflexivity.
Defined.
Fixpoint Nat_to_Pos (n : nat) : Int.Pos :=
match n with
| 0 => Int.one
| S k => succ_pos (Nat_to_Pos k)
end.
Definition Z'_to_Int : Z' -> Int.
Proof.
simple refine (Z'_rec _ _ _ _).
- induction 1 as [ | n IHn].
apply (Int.zero).
apply (succ_int IHn).
- induction 1 as [ | n IHn].
apply (Int.zero).
apply (pred_int IHn).
- reflexivity.
Defined.
Definition Pos_to_Nat : Int.Pos -> nat.
Proof.
induction 1 as [ | n IHn].
- apply 1.
- apply (S IHn).
Defined.
Definition Int_to_Z' (x : Int) : Z'.
Proof.
induction x as [p | | p].
apply (negative (Pos_to_Nat p)).
apply (positive 0).
apply (positive (Pos_to_Nat p)).
Defined.
Definition Z'_to_int_pos_homomorphism n :
Z'_to_Int (positive (S n)) = succ_int (Z'_to_Int (positive n)) := idpath.
Definition Z'_to_int_neg_homomorphism n :
Z'_to_Int (negative (S n)) = pred_int (Z'_to_Int (negative n)) := idpath.
Theorem Int_to_Z'_to_Int : forall x : Int, Z'_to_Int(Int_to_Z' x) = x.
Proof.
induction x as [p | | p].
- induction p as [ | p IHp ].
* reflexivity.
* refine (Z'_to_int_neg_homomorphism _ @ ap pred_int IHp).
- reflexivity.
- induction p as [ | p IHp ].
* reflexivity.
* refine (Z'_to_int_pos_homomorphism _ @ ap succ_int IHp).
Defined.
Lemma Int_to_Z'_succ_homomorphism :
forall x, Int_to_Z' (succ_int x) = succ_Z' (Int_to_Z' x).
Proof.
induction x as [p | | p].
- induction p as [ | p IHp] ; cbn.
* apply path.
* reflexivity.
- reflexivity.
- induction p ; reflexivity.
Defined.
Lemma Int_to_Z'_pred_homomorphism :
forall x : Int, Int_to_Z' (pred_int x) = pred_Z' (Int_to_Z' x).
Proof.
induction x as [p | | p] ; try (induction p) ; reflexivity.
Defined.
Theorem Z'_to_Int_to_Z' : forall x : Z', Int_to_Z'(Z'_to_Int x) = x.
Proof.
simple refine (Z'_ind _ _ _ _) ; simpl.
- induction x as [ | x] ; simpl.
* reflexivity.
* refine (ap Int_to_Z' (Z'_to_int_pos_homomorphism _)^ @ _) ; simpl.
refine (Int_to_Z'_succ_homomorphism _ @ _).
apply (ap succ_Z' IHx).
- induction x as [ | x IHx] ; simpl.
* apply path.
* refine (ap Int_to_Z' (Z'_to_int_neg_homomorphism _)^ @ _) ; simpl.
refine (Int_to_Z'_pred_homomorphism _ @ _).
apply (ap pred_Z' IHx).
- simpl.
refine (transport_paths_FlFr path _ @ _).
refine (ap (fun z => _ @ z) (ap_idmap _) @ _).
refine (ap (fun z => z @ _) (concat_p1 _) @ _).
assert (ap (fun x : Z' => Z'_to_Int x) path = idpath) as X.
{
apply axiomK_hset ; apply hset_int.
}
refine (ap (fun z => z^ @ path) (ap_compose Z'_to_Int Int_to_Z' path) @ _).
refine (ap (fun z => (ap Int_to_Z' z)^ @ _) X @ _).
apply concat_1p.
Defined.
Definition biinv_Int_to_Z' : BiInv Int_to_Z' :=
((Z'_to_Int ; Int_to_Z'_to_Int), (Z'_to_Int ; Z'_to_Int_to_Z')).
Instance equiv_Int_to_Z' : IsEquiv Int_to_Z' :=
isequiv_biinv _ biinv_Int_to_Z'.
Instance Z'_set : IsHSet Z'.
Proof.
apply (trunc_equiv Int Int_to_Z').
Defined.
Definition Z_to_Z' : Z -> Z'.
Proof.
hrecursion.
- apply (positive 0).
- apply succ_Z'.
- apply pred_Z'.
- hinduction.
* apply (fun _ => idpath).
* induction x as [ | x IHx] ; simpl.
** apply path^.
** reflexivity.
* apply set_path2.
- hinduction.
* induction x as [ | x IHx] ; simpl.
** apply path.
** reflexivity.
* apply (fun _ => idpath).
* apply set_path2.
Defined.
Definition Z'_to_Z : Z' -> Z.
Proof.
hrecursion.
- induction 1 as [ | x IHx].
* apply zero_Z.
* apply (succ IHx).
- induction 1 as [ | x IHx].
* apply zero_Z.
* apply (pred IHx).
- reflexivity.
Defined.
Theorem Z'_to_Z_to_Z' : forall n : Z', Z_to_Z'(Z'_to_Z n) = n.
Proof.
hinduction.
- induction x as [ | x IHx] ; cbn.
* reflexivity.
* apply (ap succ_Z' IHx).
- induction x as [ | x IHx] ; cbn.
* apply path.
* apply (ap pred_Z' IHx).
- apply set_path2.
Defined.
Lemma Z'_to_Z_succ : forall n, Z'_to_Z(succ_Z' n) = succ(Z'_to_Z n).
Proof.
hinduction.
- apply (fun _ => idpath).
- induction x.
* reflexivity.
* apply inv2.
- apply set_path2.
Defined.
Lemma Z'_to_Z_pred : forall n, Z'_to_Z(pred_Z' n) = pred(Z'_to_Z n).
Proof.
hinduction.
- induction x.
* reflexivity.
* apply inv1.
- apply (fun _ => idpath).
- apply set_path2.
Defined.
Theorem Z_to_Z'_to_Z : forall n : Z, Z'_to_Z(Z_to_Z' n) = n.
Proof.
hinduction ; try (intros ; apply set_path2).
- reflexivity.
- intros x Hx.
refine (_ @ ap succ Hx).
apply Z'_to_Z_succ.
- intros x Hx.
refine (_ @ ap pred Hx).
apply Z'_to_Z_pred.
Defined.
Definition biinv_Z'_to_Z : BiInv Z'_to_Z :=
((Z_to_Z' ; Z'_to_Z_to_Z'), (Z_to_Z' ; Z_to_Z'_to_Z)).
Definition equiv_Z'_to_Z : IsEquiv Z'_to_Z :=
isequiv_biinv _ biinv_Z'_to_Z.
End Isomorphic.