mirror of https://github.com/nmvdw/HITs-Examples
111 lines
2.8 KiB
Coq
111 lines
2.8 KiB
Coq
(** Extensionality of the FSets *)
|
|
Require Import HoTT HitTactics.
|
|
Require Import definition operations properties.
|
|
|
|
Section ext.
|
|
Context {A : Type}.
|
|
Context `{Univalence}.
|
|
|
|
Lemma subset_union_equiv
|
|
: forall X Y : FSet A, subset X Y <~> U X Y = Y.
|
|
Proof.
|
|
intros X Y.
|
|
eapply equiv_iff_hprop_uncurried.
|
|
split.
|
|
- apply subset_union.
|
|
- intro HXY.
|
|
rewrite <- HXY.
|
|
apply subset_union_l.
|
|
Defined.
|
|
|
|
Lemma subset_isIn (X Y : FSet A) :
|
|
(forall (a : A), isIn a X -> isIn a Y)
|
|
<~> (subset X Y).
|
|
Proof.
|
|
eapply equiv_iff_hprop_uncurried.
|
|
split.
|
|
- hinduction X ;
|
|
try (intros; repeat (apply path_forall; intro); apply equiv_hprop_allpath ; apply _).
|
|
+ intros ; reflexivity.
|
|
+ intros a f.
|
|
apply f.
|
|
apply tr ; reflexivity.
|
|
+ intros X1 X2 H1 H2 f.
|
|
enough (subset X1 Y).
|
|
enough (subset X2 Y).
|
|
{ split. apply X. apply X0. }
|
|
* apply H2.
|
|
intros a Ha.
|
|
apply f.
|
|
apply tr.
|
|
right.
|
|
apply Ha.
|
|
* apply H1.
|
|
intros a Ha.
|
|
apply f.
|
|
apply tr.
|
|
left.
|
|
apply Ha.
|
|
- hinduction X ;
|
|
try (intros; repeat (apply path_forall; intro); apply equiv_hprop_allpath ; apply _).
|
|
+ intros. contradiction.
|
|
+ intros b f a.
|
|
simple refine (Trunc_ind _ _) ; cbn.
|
|
intro p.
|
|
rewrite p^ in f.
|
|
apply f.
|
|
+ intros X1 X2 IH1 IH2 [H1 H2] a.
|
|
simple refine (Trunc_ind _ _) ; cbn.
|
|
intros [C1 | C2].
|
|
++ apply (IH1 H1 a C1).
|
|
++ apply (IH2 H2 a C2).
|
|
Defined.
|
|
|
|
(** ** Extensionality proof *)
|
|
|
|
Lemma eq_subset' (X Y : FSet A) : X = Y <~> (U Y X = X) * (U X Y = Y).
|
|
Proof.
|
|
unshelve eapply BuildEquiv.
|
|
{ intro H'. rewrite H'. split; apply union_idem. }
|
|
unshelve esplit.
|
|
{ intros [H1 H2]. etransitivity. apply H1^.
|
|
rewrite comm. apply H2. }
|
|
intro; apply path_prod; apply set_path2.
|
|
all: intro; apply set_path2.
|
|
Defined.
|
|
|
|
Lemma eq_subset (X Y : FSet A) :
|
|
X = Y <~> (subset Y X * subset X Y).
|
|
Proof.
|
|
transitivity ((U Y X = X) * (U X Y = Y)).
|
|
apply eq_subset'.
|
|
symmetry.
|
|
eapply equiv_functor_prod'; apply subset_union_equiv.
|
|
Defined.
|
|
|
|
Theorem fset_ext (X Y : FSet A) :
|
|
X = Y <~> (forall (a : A), isIn a X = isIn a Y).
|
|
Proof.
|
|
refine (@equiv_compose' _ _ _ _ _) ; [ | apply eq_subset ].
|
|
refine (@equiv_compose' _ ((forall a, isIn a Y -> isIn a X)
|
|
*(forall a, isIn a X -> isIn a Y)) _ _ _).
|
|
- apply equiv_iff_hprop_uncurried.
|
|
split.
|
|
* intros [H1 H2 a].
|
|
specialize (H1 a) ; specialize (H2 a).
|
|
apply path_iff_hprop.
|
|
apply H2.
|
|
apply H1.
|
|
* intros H1.
|
|
split ; intro a ; intro H2.
|
|
+ rewrite (H1 a).
|
|
apply H2.
|
|
+ rewrite <- (H1 a).
|
|
apply H2.
|
|
- eapply equiv_functor_prod' ;
|
|
apply equiv_iff_hprop_uncurried ;
|
|
split ; apply subset_isIn.
|
|
Defined.
|
|
|
|
End ext.
|