mirror of https://github.com/nmvdw/HITs-Examples
331 lines
8.0 KiB
Coq
331 lines
8.0 KiB
Coq
(* Type which proves that all types have merely decidable equality implies LEM *)
|
|
Require Import HoTT HitTactics Sub.
|
|
|
|
Module Export T.
|
|
Section HIT.
|
|
Variable A : Type.
|
|
|
|
Private Inductive T (B : Type) : Type :=
|
|
| b : T B
|
|
| c : T B.
|
|
|
|
Axiom p : A -> b A = c A.
|
|
Axiom setT : IsHSet (T A).
|
|
|
|
End HIT.
|
|
|
|
Arguments p {_} _.
|
|
|
|
Section T_induction.
|
|
Variable A : Type.
|
|
Variable (P : (T A) -> Type).
|
|
Variable (H : forall x, IsHSet (P x)).
|
|
Variable (bP : P (b A)).
|
|
Variable (cP : P (c A)).
|
|
Variable (pP : forall a : A, (p a) # bP = cP).
|
|
|
|
(* Induction principle *)
|
|
Fixpoint T_ind
|
|
(x : T A)
|
|
{struct x}
|
|
: P x
|
|
:= (match x return _ -> _ -> P x with
|
|
| b => fun _ _ => bP
|
|
| c => fun _ _ => cP
|
|
end) pP H.
|
|
|
|
Axiom T_ind_beta_p : forall (a : A),
|
|
apD T_ind (p a) = pP a.
|
|
End T_induction.
|
|
|
|
Section T_recursion.
|
|
|
|
Variable A : Type.
|
|
Variable P : Type.
|
|
Variable H : IsHSet P.
|
|
Variable bP : P.
|
|
Variable cP : P.
|
|
Variable pP : A -> bP = cP.
|
|
|
|
Definition T_rec : T A -> P.
|
|
Proof.
|
|
simple refine (T_ind A _ _ _ _ _) ; cbn.
|
|
- apply bP.
|
|
- apply cP.
|
|
- intro a.
|
|
simple refine ((transport_const _ _) @ (pP a)).
|
|
Defined.
|
|
|
|
Definition T_rec_beta_p : forall (a : A),
|
|
ap T_rec (p a) = pP a.
|
|
Proof.
|
|
intros.
|
|
unfold T_rec.
|
|
eapply (cancelL (transport_const (p a) _)).
|
|
simple refine ((apD_const _ _)^ @ _).
|
|
apply T_ind_beta_p.
|
|
Defined.
|
|
End T_recursion.
|
|
|
|
Instance T_recursion A : HitRecursion (T A)
|
|
:= {indTy := _; recTy := _;
|
|
H_inductor := T_ind A; H_recursor := T_rec A }.
|
|
|
|
End T.
|
|
|
|
Section merely_dec_lem.
|
|
Variable A : hProp.
|
|
Context `{Univalence}.
|
|
|
|
Definition code_b : T A -> hProp.
|
|
Proof.
|
|
hrecursion.
|
|
- apply Unit_hp.
|
|
- apply A.
|
|
- intro a.
|
|
apply path_iff_hprop.
|
|
* apply (fun _ => a).
|
|
* apply (fun _ => tt).
|
|
Defined.
|
|
|
|
Definition code_c : T A -> hProp.
|
|
Proof.
|
|
hrecursion.
|
|
- apply A.
|
|
- apply Unit_hp.
|
|
- intro a.
|
|
apply path_iff_hprop.
|
|
* apply (fun _ => tt).
|
|
* apply (fun _ => a).
|
|
Defined.
|
|
|
|
Definition code : T A -> T A -> hProp.
|
|
Proof.
|
|
simple refine (T_rec _ _ _ _ _ _).
|
|
- exact code_b.
|
|
- exact code_c.
|
|
- intro a.
|
|
apply path_forall.
|
|
intro z.
|
|
hinduction z.
|
|
* apply path_iff_hprop.
|
|
** apply (fun _ => a).
|
|
** apply (fun _ => tt).
|
|
* apply path_iff_hprop.
|
|
** apply (fun _ => tt).
|
|
** apply (fun _ => a).
|
|
* intros. apply set_path2.
|
|
Defined.
|
|
|
|
Local Ltac f_prop := apply path_forall ; intro ; apply path_ishprop.
|
|
|
|
Lemma transport_code_b_x (a : A) :
|
|
transport code_b (p a) = fun _ => a.
|
|
Proof.
|
|
f_prop.
|
|
Defined.
|
|
|
|
Lemma transport_code_c_x (a : A) :
|
|
transport code_c (p a) = fun _ => tt.
|
|
Proof.
|
|
f_prop.
|
|
Defined.
|
|
|
|
Lemma transport_code_c_x_V (a : A) :
|
|
transport code_c (p a)^ = fun _ => a.
|
|
Proof.
|
|
f_prop.
|
|
Defined.
|
|
|
|
Lemma transport_code_x_b (a : A) :
|
|
transport (fun x => code x (b A)) (p a) = fun _ => a.
|
|
Proof.
|
|
f_prop.
|
|
Defined.
|
|
|
|
Lemma transport_code_x_c (a : A) :
|
|
transport (fun x => code x (c A)) (p a) = fun _ => tt.
|
|
Proof.
|
|
f_prop.
|
|
Defined.
|
|
|
|
Lemma transport_code_x_c_V (a : A) :
|
|
transport (fun x => code x (c A)) (p a)^ = fun _ => a.
|
|
Proof.
|
|
f_prop.
|
|
Defined.
|
|
|
|
Lemma ap_diag {B : Type} {x y : B} (p : x = y) :
|
|
ap (fun x : B => (x, x)) p = path_prod' p p.
|
|
Proof.
|
|
by path_induction.
|
|
Defined.
|
|
|
|
Lemma transport_code_diag (a : A) z :
|
|
(transport (fun i : (T A) => code i i) (p a)) z = tt.
|
|
Proof.
|
|
apply path_ishprop.
|
|
Defined.
|
|
|
|
Definition r : forall (x : T A), code x x.
|
|
Proof.
|
|
simple refine (T_ind _ _ _ _ _ _); simpl.
|
|
- exact tt.
|
|
- exact tt.
|
|
- intro a.
|
|
apply transport_code_diag.
|
|
Defined.
|
|
|
|
Definition encode_pre : forall (x y : T A), x = y -> code x y
|
|
:= fun x y p => transport (fun z => code x z) p (r x).
|
|
|
|
Definition encode : forall x y, x = y -> code x y.
|
|
Proof.
|
|
intros x y.
|
|
intro p.
|
|
refine (transport (fun z => code x z) p _). clear p.
|
|
revert x. simple refine (T_ind _ _ _ _ _ _); simpl.
|
|
- exact tt.
|
|
- exact tt.
|
|
- intro a.
|
|
apply path_ishprop.
|
|
Defined.
|
|
|
|
Definition decode_b : forall (y : T A), code_b y -> (b A) = y.
|
|
Proof.
|
|
simple refine (T_ind _ _ _ _ _ _) ; simpl.
|
|
- exact (fun _ => idpath).
|
|
- exact (fun a => p a).
|
|
- intro a.
|
|
apply path_forall.
|
|
intro t.
|
|
refine (transport_arrow _ _ _ @ _).
|
|
refine (transport_paths_FlFr _ _ @ _).
|
|
hott_simpl.
|
|
f_ap.
|
|
apply path_ishprop.
|
|
Defined.
|
|
|
|
Definition decode_c : forall (y : T A), code_c y -> (c A) = y.
|
|
Proof.
|
|
simple refine (T_ind _ _ _ _ _ _); simpl.
|
|
- exact (fun a => (p a)^).
|
|
- exact (fun _ => idpath).
|
|
- intro a.
|
|
apply path_forall.
|
|
intro t.
|
|
refine (transport_arrow _ _ _ @ _).
|
|
refine (transport_paths_FlFr _ _ @ _).
|
|
rewrite transport_code_c_x_V.
|
|
hott_simpl.
|
|
Defined.
|
|
|
|
Lemma transport_paths_FlFr_trunc :
|
|
forall {X Y : Type} (f g : X -> Y) {x1 x2 : X} (q : x1 = x2)
|
|
(r : f x1 = g x1),
|
|
transport (fun x : X => Trunc 0 (f x = g x)) q (tr r) = tr (((ap f q)^ @ r) @ ap g q).
|
|
Proof.
|
|
destruct q; simpl. intro r.
|
|
refine (ap tr _).
|
|
exact ((concat_1p r)^ @ (concat_p1 (1 @ r))^).
|
|
Defined.
|
|
|
|
Definition decode : forall (x y : T A), code x y -> x = y.
|
|
Proof.
|
|
simple refine (T_ind _ _ _ _ _ _); simpl.
|
|
- intro y. exact (decode_b y).
|
|
- intro y. exact (decode_c y).
|
|
- intro a.
|
|
apply path_forall. intro z.
|
|
rewrite transport_forall_constant.
|
|
apply path_forall. intros c.
|
|
rewrite transport_arrow.
|
|
hott_simpl.
|
|
rewrite (transport_paths_FlFr _ _).
|
|
revert z c. simple refine (T_ind _ _ _ _ _ _) ; simpl.
|
|
+ intro.
|
|
hott_simpl.
|
|
f_ap.
|
|
refine (ap (fun x => (p x)) _).
|
|
apply path_ishprop.
|
|
+ intro.
|
|
rewrite transport_code_x_c_V.
|
|
hott_simpl.
|
|
+ intro b.
|
|
apply path_forall.
|
|
intro z.
|
|
rewrite transport_forall.
|
|
apply set_path2.
|
|
Defined.
|
|
|
|
Lemma decode_encode (u v : T A) : forall (p : u = v),
|
|
decode u v (encode u v p) = p.
|
|
Proof.
|
|
intros p. induction p.
|
|
simpl. revert u. simple refine (T_ind _ _ _ _ _ _).
|
|
+ simpl. reflexivity.
|
|
+ simpl. reflexivity.
|
|
+ intro a.
|
|
apply set_path2.
|
|
Defined.
|
|
|
|
Lemma encode_decode : forall (u v : T A) (c : code u v),
|
|
encode u v (decode u v c) = c.
|
|
Proof.
|
|
simple refine (T_ind _ _ _ _ _ _).
|
|
- simple refine (T_ind _ _ _ _ _ _).
|
|
+ simpl. apply path_ishprop.
|
|
+ simpl. intro a. apply path_ishprop.
|
|
+ intro a. apply path_forall; intros ?. apply set_path2.
|
|
- simple refine (T_ind _ _ _ _ _ _).
|
|
+ simpl. intro a. apply path_ishprop.
|
|
+ simpl. apply path_ishprop.
|
|
+ intro a. apply path_forall; intros ?. apply set_path2.
|
|
- intro a. repeat (apply path_forall; intros ?). apply set_path2.
|
|
Defined.
|
|
|
|
|
|
Instance T_hprop (a : A) : IsHProp (b A = c A).
|
|
Proof.
|
|
apply hprop_allpath.
|
|
intros x y.
|
|
pose (encode (b A) _ x) as t1.
|
|
pose (encode (b A) _ y) as t2.
|
|
assert (t1 = t2).
|
|
{
|
|
unfold t1, t2.
|
|
apply path_ishprop.
|
|
}
|
|
pose (decode _ _ t1) as t3.
|
|
pose (decode _ _ t2) as t4.
|
|
assert (t3 = t4) as H1.
|
|
{
|
|
unfold t3, t4.
|
|
f_ap.
|
|
}
|
|
unfold t3, t4, t1, t2 in H1.
|
|
rewrite ?decode_encode in H1.
|
|
apply H1.
|
|
Defined.
|
|
|
|
Lemma equiv_pathspace_T : (b A = c A) = A.
|
|
Proof.
|
|
apply path_iff_ishprop.
|
|
- intro x.
|
|
apply (encode (b A) (c A) x).
|
|
- apply p.
|
|
Defined.
|
|
|
|
End merely_dec_lem.
|
|
|
|
Theorem merely_dec `{Univalence} : (forall (A : Type) (a b : A), hor (a = b) (~a = b))
|
|
->
|
|
forall (A : hProp), A + (~A).
|
|
Proof.
|
|
intros.
|
|
specialize (X (T A) (b A) (c A)).
|
|
rewrite (equiv_pathspace_T A) in X.
|
|
strip_truncations.
|
|
apply X.
|
|
Defined.
|