mirror of
				https://github.com/nmvdw/HITs-Examples
				synced 2025-11-04 07:33:51 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			331 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Coq
		
	
	
	
	
	
			
		
		
	
	
			331 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Coq
		
	
	
	
	
	
(* Type which proves that all types have merely decidable equality implies LEM *)
 | 
						|
Require Import HoTT HitTactics Sub.
 | 
						|
 | 
						|
Module Export T.
 | 
						|
  Section HIT.
 | 
						|
    Variable A : Type.
 | 
						|
 | 
						|
    Private Inductive T (B : Type) : Type :=
 | 
						|
    | b : T B
 | 
						|
    | c : T B.    
 | 
						|
 | 
						|
    Axiom p : A -> b A = c A.
 | 
						|
    Axiom setT : IsHSet (T A).
 | 
						|
 | 
						|
  End HIT.
 | 
						|
 | 
						|
  Arguments p {_} _.
 | 
						|
 | 
						|
  Section T_induction.
 | 
						|
    Variable A : Type.
 | 
						|
    Variable (P : (T A) -> Type).
 | 
						|
    Variable (H : forall x, IsHSet (P x)).
 | 
						|
    Variable (bP : P (b A)).
 | 
						|
    Variable (cP : P (c A)).
 | 
						|
    Variable (pP : forall a : A, (p a) # bP = cP).
 | 
						|
    
 | 
						|
    (* Induction principle *)
 | 
						|
    Fixpoint T_ind
 | 
						|
             (x : T A)
 | 
						|
             {struct x}
 | 
						|
      : P x
 | 
						|
      := (match x return _ -> _ -> P x with
 | 
						|
          | b => fun _ _ => bP
 | 
						|
          | c => fun _ _ => cP                              
 | 
						|
          end) pP H.
 | 
						|
 | 
						|
    Axiom T_ind_beta_p : forall (a : A),
 | 
						|
        apD T_ind (p a) = pP a.
 | 
						|
  End T_induction.
 | 
						|
 | 
						|
  Section T_recursion.
 | 
						|
 | 
						|
    Variable A : Type.
 | 
						|
    Variable P : Type.
 | 
						|
    Variable H : IsHSet P.
 | 
						|
    Variable bP : P.
 | 
						|
    Variable cP : P.
 | 
						|
    Variable pP : A -> bP = cP.
 | 
						|
 | 
						|
    Definition T_rec : T A -> P.
 | 
						|
    Proof.
 | 
						|
      simple refine (T_ind A _ _ _ _ _) ; cbn.
 | 
						|
      - apply bP.
 | 
						|
      - apply cP.
 | 
						|
      - intro a.
 | 
						|
        simple refine ((transport_const _ _) @  (pP a)).
 | 
						|
    Defined.
 | 
						|
 | 
						|
    Definition T_rec_beta_p : forall (a : A),
 | 
						|
        ap T_rec (p a) = pP a.
 | 
						|
    Proof.
 | 
						|
      intros.
 | 
						|
      unfold T_rec.
 | 
						|
      eapply (cancelL (transport_const (p a) _)).
 | 
						|
      simple refine ((apD_const _ _)^ @ _).
 | 
						|
      apply T_ind_beta_p.
 | 
						|
    Defined.
 | 
						|
  End T_recursion.
 | 
						|
 | 
						|
  Instance T_recursion A : HitRecursion (T A)
 | 
						|
    := {indTy := _; recTy := _; 
 | 
						|
        H_inductor := T_ind A; H_recursor := T_rec A }.
 | 
						|
 | 
						|
End T.
 | 
						|
 | 
						|
Section merely_dec_lem.
 | 
						|
  Variable A : hProp.
 | 
						|
  Context `{Univalence}.
 | 
						|
 | 
						|
  Definition code_b : T A -> hProp.
 | 
						|
  Proof.
 | 
						|
    hrecursion.
 | 
						|
    - apply Unit_hp.
 | 
						|
    - apply A.
 | 
						|
    - intro a.
 | 
						|
      apply path_iff_hprop.
 | 
						|
      * apply (fun _ => a).
 | 
						|
      * apply (fun _ => tt).
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Definition code_c : T A -> hProp.
 | 
						|
  Proof.
 | 
						|
    hrecursion.
 | 
						|
    - apply A.
 | 
						|
    - apply Unit_hp.
 | 
						|
    - intro a.
 | 
						|
      apply path_iff_hprop.
 | 
						|
      * apply (fun _ => tt).
 | 
						|
      * apply (fun _ => a).
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Definition code : T A -> T A -> hProp.
 | 
						|
  Proof.
 | 
						|
    simple refine (T_rec _ _ _ _ _ _).
 | 
						|
    - exact code_b.
 | 
						|
    - exact code_c.
 | 
						|
    - intro a.
 | 
						|
      apply path_forall.
 | 
						|
      intro z.
 | 
						|
      hinduction z.
 | 
						|
      * apply path_iff_hprop.
 | 
						|
        ** apply (fun _ => a).
 | 
						|
        ** apply (fun _ => tt).
 | 
						|
      * apply path_iff_hprop.
 | 
						|
        ** apply (fun _ => tt).
 | 
						|
        ** apply (fun _ => a).
 | 
						|
      * intros. apply set_path2.
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Local Ltac f_prop := apply path_forall ; intro ; apply path_ishprop.
 | 
						|
 | 
						|
  Lemma transport_code_b_x (a : A) : 
 | 
						|
    transport code_b (p a) = fun _ => a.
 | 
						|
  Proof.
 | 
						|
    f_prop.
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Lemma transport_code_c_x (a : A) : 
 | 
						|
    transport code_c (p a) = fun _ => tt.
 | 
						|
  Proof.
 | 
						|
    f_prop.    
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Lemma transport_code_c_x_V (a : A) : 
 | 
						|
    transport code_c (p a)^ = fun _ => a.
 | 
						|
  Proof. 
 | 
						|
    f_prop.    
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Lemma transport_code_x_b (a : A) : 
 | 
						|
    transport (fun x => code x (b A)) (p a) = fun _ => a.
 | 
						|
  Proof.
 | 
						|
    f_prop.
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Lemma transport_code_x_c (a : A) : 
 | 
						|
    transport (fun x => code x (c A)) (p a) = fun _ => tt.
 | 
						|
  Proof.
 | 
						|
    f_prop.
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Lemma transport_code_x_c_V (a : A) : 
 | 
						|
    transport (fun x => code x (c A)) (p a)^ = fun _ => a.
 | 
						|
  Proof.
 | 
						|
    f_prop.
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Lemma ap_diag {B : Type} {x y : B} (p : x = y) :
 | 
						|
    ap (fun x : B => (x, x)) p = path_prod' p p.   
 | 
						|
  Proof.
 | 
						|
      by path_induction.
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Lemma transport_code_diag (a : A) z :
 | 
						|
    (transport (fun i : (T A) => code i i) (p a)) z = tt.
 | 
						|
  Proof.
 | 
						|
    apply path_ishprop.
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Definition r : forall (x : T A), code x x.
 | 
						|
  Proof.
 | 
						|
    simple refine (T_ind _ _ _ _ _ _); simpl.
 | 
						|
    - exact tt.
 | 
						|
    - exact tt.
 | 
						|
    - intro a.
 | 
						|
      apply transport_code_diag.
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Definition encode_pre : forall (x y : T A), x = y -> code x y
 | 
						|
    := fun x y p => transport (fun z => code x z) p (r x).
 | 
						|
 | 
						|
  Definition encode : forall x y, x = y -> code x y.
 | 
						|
  Proof.
 | 
						|
    intros x y.
 | 
						|
    intro p.
 | 
						|
    refine (transport (fun z => code x z) p _). clear p.
 | 
						|
    revert x. simple refine (T_ind _ _ _ _ _ _); simpl.
 | 
						|
    - exact tt.
 | 
						|
    - exact tt.
 | 
						|
    - intro a.
 | 
						|
      apply path_ishprop.
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Definition decode_b : forall (y : T A), code_b y -> (b A) = y.
 | 
						|
  Proof.
 | 
						|
    simple refine (T_ind _ _ _ _ _ _) ; simpl.
 | 
						|
    - exact (fun _ => idpath).
 | 
						|
    - exact (fun a => p a).
 | 
						|
    - intro a.
 | 
						|
      apply path_forall.
 | 
						|
      intro t.
 | 
						|
      refine (transport_arrow _ _ _ @ _).
 | 
						|
      refine (transport_paths_FlFr _ _ @ _).
 | 
						|
      hott_simpl.
 | 
						|
      f_ap.
 | 
						|
      apply path_ishprop.
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Definition decode_c : forall (y : T A), code_c y -> (c A) = y.
 | 
						|
  Proof.
 | 
						|
    simple refine (T_ind _ _ _ _ _ _); simpl.
 | 
						|
    - exact (fun a => (p a)^).
 | 
						|
    - exact (fun _ => idpath).
 | 
						|
    - intro a.
 | 
						|
      apply path_forall.
 | 
						|
      intro t.
 | 
						|
      refine (transport_arrow _ _ _ @ _).
 | 
						|
      refine (transport_paths_FlFr _ _ @ _).
 | 
						|
      rewrite transport_code_c_x_V.
 | 
						|
      hott_simpl.      
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Lemma transport_paths_FlFr_trunc :
 | 
						|
    forall {X Y : Type} (f g : X -> Y) {x1 x2 : X} (q : x1 = x2)
 | 
						|
           (r : f x1 = g x1),
 | 
						|
      transport (fun x : X => Trunc 0 (f x = g x)) q (tr r) = tr (((ap f q)^ @ r) @ ap g q).
 | 
						|
  Proof.
 | 
						|
    destruct q; simpl. intro r.
 | 
						|
    refine (ap tr _).
 | 
						|
    exact ((concat_1p r)^ @ (concat_p1 (1 @ r))^).
 | 
						|
  Defined.
 | 
						|
  
 | 
						|
  Definition decode : forall (x y : T A), code x y -> x = y.
 | 
						|
  Proof.
 | 
						|
    simple refine (T_ind _ _ _ _ _ _); simpl.
 | 
						|
    - intro y. exact (decode_b y).
 | 
						|
    - intro y. exact (decode_c y).
 | 
						|
    - intro a.
 | 
						|
      apply path_forall. intro z.
 | 
						|
      rewrite transport_forall_constant.
 | 
						|
      apply path_forall. intros c.
 | 
						|
      rewrite transport_arrow.
 | 
						|
      hott_simpl.
 | 
						|
      rewrite (transport_paths_FlFr _ _).
 | 
						|
      revert z c. simple refine (T_ind _ _ _ _ _ _) ; simpl.
 | 
						|
      + intro.
 | 
						|
        hott_simpl.
 | 
						|
        f_ap.
 | 
						|
        refine (ap (fun x => (p x)) _).
 | 
						|
        apply path_ishprop.
 | 
						|
      + intro.        
 | 
						|
        rewrite transport_code_x_c_V.
 | 
						|
        hott_simpl.
 | 
						|
      + intro b.
 | 
						|
        apply path_forall.
 | 
						|
        intro z.
 | 
						|
        rewrite transport_forall.
 | 
						|
        apply set_path2.
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Lemma decode_encode (u v : T A) : forall (p : u = v),
 | 
						|
      decode u v (encode u v p) = p.
 | 
						|
  Proof.
 | 
						|
    intros p. induction p.
 | 
						|
    simpl. revert u. simple refine (T_ind _ _ _ _ _ _).
 | 
						|
    + simpl. reflexivity.
 | 
						|
    + simpl. reflexivity.    
 | 
						|
    + intro a.
 | 
						|
      apply set_path2.
 | 
						|
  Defined.
 | 
						|
 | 
						|
  Lemma encode_decode : forall (u v : T A) (c : code u v),
 | 
						|
      encode u v (decode u v c) = c.
 | 
						|
  Proof.
 | 
						|
    simple refine (T_ind _ _ _ _ _ _).
 | 
						|
    - simple refine (T_ind _ _ _ _ _ _).
 | 
						|
      + simpl. apply path_ishprop.
 | 
						|
      + simpl. intro a. apply path_ishprop.
 | 
						|
      + intro a. apply path_forall; intros ?. apply set_path2.
 | 
						|
    - simple refine (T_ind _ _ _ _ _ _).
 | 
						|
      + simpl. intro a. apply path_ishprop. 
 | 
						|
      + simpl. apply path_ishprop. 
 | 
						|
      + intro a. apply path_forall; intros ?. apply set_path2.
 | 
						|
    - intro a. repeat (apply path_forall; intros ?). apply set_path2.
 | 
						|
  Defined.
 | 
						|
  
 | 
						|
 | 
						|
  Instance T_hprop (a : A) : IsHProp (b A = c A).
 | 
						|
  Proof.
 | 
						|
    apply hprop_allpath.
 | 
						|
    intros x y.
 | 
						|
    pose (encode (b A) _ x) as t1.
 | 
						|
    pose (encode (b A) _ y) as t2.
 | 
						|
    assert (t1 = t2).
 | 
						|
    {
 | 
						|
      unfold t1, t2.
 | 
						|
      apply path_ishprop.
 | 
						|
    }
 | 
						|
    pose (decode _ _ t1) as t3.
 | 
						|
    pose (decode _ _ t2) as t4.
 | 
						|
    assert (t3 = t4) as H1.
 | 
						|
    {
 | 
						|
      unfold t3, t4.
 | 
						|
      f_ap.
 | 
						|
    }
 | 
						|
    unfold t3, t4, t1, t2 in H1.
 | 
						|
    rewrite ?decode_encode in H1.
 | 
						|
    apply H1.
 | 
						|
  Defined.
 | 
						|
  
 | 
						|
  Lemma equiv_pathspace_T : (b A = c A) = A.
 | 
						|
  Proof.
 | 
						|
    apply path_iff_ishprop.
 | 
						|
    - intro x.
 | 
						|
      apply (encode (b A) (c A) x).
 | 
						|
    - apply p.
 | 
						|
  Defined.
 | 
						|
 | 
						|
End merely_dec_lem.
 | 
						|
 | 
						|
Theorem merely_dec `{Univalence} : (forall (A : Type) (a b : A), hor (a = b) (~a = b))
 | 
						|
                                   ->
 | 
						|
                                   forall (A : hProp), A + (~A).
 | 
						|
Proof.
 | 
						|
  intros.
 | 
						|
  specialize (X (T A) (b A) (c A)).
 | 
						|
  rewrite (equiv_pathspace_T A) in X.
 | 
						|
  strip_truncations.
 | 
						|
  apply X.
 | 
						|
Defined.
 |