mirror of https://github.com/nmvdw/HITs-Examples
351 lines
9.0 KiB
Coq
351 lines
9.0 KiB
Coq
Require Import HoTT.
|
||
Require Import FSets.
|
||
|
||
Section interface.
|
||
Context `{Univalence}.
|
||
Variable (T : Type -> Type)
|
||
(f : forall A, T A -> FSet A).
|
||
Context `{forall A, hasMembership (T A) A
|
||
, forall A, hasEmpty (T A)
|
||
, forall A, hasSingleton (T A) A
|
||
, forall A, hasUnion (T A)
|
||
, forall A, hasComprehension (T A) A}.
|
||
|
||
Class sets :=
|
||
{
|
||
f_empty : forall A, f A ∅ = ∅ ;
|
||
f_singleton : forall A a, f A (singleton a) = {|a|};
|
||
f_union : forall A X Y, f A (union X Y) = (f A X) ∪ (f A Y);
|
||
f_filter : forall A φ X, f A (filter φ X) = {| f A X & φ |};
|
||
f_member : forall A a X, member a X = a ∈ (f A X)
|
||
}.
|
||
|
||
Global Instance f_surjective A `{sets} : IsSurjection (f A).
|
||
Proof.
|
||
unfold IsSurjection.
|
||
hinduction ; try (intros ; apply path_ishprop).
|
||
- simple refine (BuildContr _ _ _).
|
||
* refine (tr(∅;_)).
|
||
apply f_empty.
|
||
* intros ; apply path_ishprop.
|
||
- intro a.
|
||
simple refine (BuildContr _ _ _).
|
||
* refine (tr({|a|};_)).
|
||
apply f_singleton.
|
||
* intros ; apply path_ishprop.
|
||
- intros Y1 Y2 HY1 HY2.
|
||
destruct HY1 as [X1' HX1].
|
||
destruct HY2 as [X2' HX2].
|
||
simple refine (BuildContr _ _ _).
|
||
* simple refine (Trunc_rec _ X1') ; intro X1.
|
||
simple refine (Trunc_rec _ X2') ; intro X2.
|
||
destruct X1 as [X1 fX1].
|
||
destruct X2 as [X2 fX2].
|
||
refine (tr(X1 ∪ X2;_)).
|
||
rewrite f_union, fX1, fX2.
|
||
reflexivity.
|
||
* intros ; apply path_ishprop.
|
||
Defined.
|
||
|
||
End interface.
|
||
|
||
Section quotient_surjection.
|
||
Variable (A B : Type)
|
||
(f : A -> B)
|
||
(H : IsSurjection f).
|
||
Context `{IsHSet B} `{Univalence}.
|
||
|
||
Definition f_eq : relation A := fun a1 a2 => f a1 = f a2.
|
||
Definition quotientB : Type := quotient f_eq.
|
||
|
||
Global Instance quotientB_recursion : HitRecursion quotientB :=
|
||
{
|
||
indTy := _;
|
||
recTy :=
|
||
forall (P : Type) (HP: IsHSet P) (u : A -> P),
|
||
(forall x y : A, f_eq x y -> u x = u y) -> quotientB -> P;
|
||
H_inductor := quotient_ind f_eq ;
|
||
H_recursor := @quotient_rec _ f_eq _
|
||
}.
|
||
|
||
Global Instance R_refl : Reflexive f_eq.
|
||
Proof.
|
||
intro.
|
||
reflexivity.
|
||
Defined.
|
||
|
||
Global Instance R_sym : Symmetric f_eq.
|
||
Proof.
|
||
intros a b Hab.
|
||
apply (Hab^).
|
||
Defined.
|
||
|
||
Global Instance R_trans : Transitive f_eq.
|
||
Proof.
|
||
intros a b c Hab Hbc.
|
||
apply (Hab @ Hbc).
|
||
Defined.
|
||
|
||
Definition quotientB_to_B : quotientB -> B.
|
||
Proof.
|
||
hrecursion.
|
||
- apply f.
|
||
- done.
|
||
Defined.
|
||
|
||
Instance quotientB_emb : IsEmbedding (quotientB_to_B).
|
||
Proof.
|
||
apply isembedding_isinj_hset.
|
||
unfold isinj.
|
||
simpl.
|
||
hrecursion ; [ | intros; apply path_ishprop ].
|
||
intro.
|
||
hrecursion ; [ | intros; apply path_ishprop ].
|
||
intros.
|
||
by apply related_classes_eq.
|
||
Defined.
|
||
|
||
Instance quotientB_surj : IsSurjection (quotientB_to_B).
|
||
Proof.
|
||
apply BuildIsSurjection.
|
||
intros Y.
|
||
destruct (H Y).
|
||
simple refine (Trunc_rec _ center) ; intro X.
|
||
apply tr.
|
||
destruct X as [a fa].
|
||
apply (class_of _ a;fa).
|
||
Defined.
|
||
|
||
Definition quotient_iso : quotientB <~> B.
|
||
Proof.
|
||
refine (BuildEquiv _ _ quotientB_to_B _).
|
||
apply isequiv_surj_emb; apply _.
|
||
Defined.
|
||
|
||
Definition reflect_eq : forall (X Y : A),
|
||
f X = f Y -> f_eq X Y.
|
||
Proof.
|
||
done.
|
||
Defined.
|
||
|
||
Lemma same_class : forall (X Y : A),
|
||
class_of f_eq X = class_of f_eq Y -> f_eq X Y.
|
||
Proof.
|
||
intros.
|
||
simple refine (classes_eq_related _ _ _ _) ; assumption.
|
||
Defined.
|
||
|
||
End quotient_surjection.
|
||
|
||
Ltac reduce T :=
|
||
intros ;
|
||
repeat (rewrite (f_empty T _)
|
||
|| rewrite (f_singleton T _)
|
||
|| rewrite (f_union T _)
|
||
|| rewrite (f_filter T _)
|
||
|| rewrite (f_member T _)).
|
||
Ltac simplify T := intros ; autounfold in * ; apply reflect_eq ; reduce T.
|
||
Ltac reflect_equality T := simplify T ; eauto with lattice_hints typeclass_instances.
|
||
Ltac reflect_eq T := autounfold
|
||
; repeat (hinduction ; try (intros ; apply path_ishprop) ; intro)
|
||
; apply related_classes_eq
|
||
; reflect_equality T.
|
||
|
||
Section quotient_properties.
|
||
Variable (T : Type -> Type).
|
||
Variable (f : forall {A : Type}, T A -> FSet A).
|
||
Context `{sets T f}.
|
||
|
||
Definition set_eq A := f_eq (T A) (FSet A) (f A).
|
||
Definition View A : Type := quotientB (T A) (FSet A) (f A).
|
||
|
||
Definition View_rec2 {A} (P : Type) (HP : IsHSet P) (u : T A -> T A -> P) :
|
||
(forall (x x' : T A), set_eq A x x' -> forall (y y' : T A), set_eq A y y' -> u x y = u x' y') ->
|
||
forall (x y : View A), P.
|
||
Proof.
|
||
intros Hresp.
|
||
assert (resp1 : forall x y y', set_eq A y y' -> u x y = u x y').
|
||
{ intros x y y'.
|
||
apply (Hresp _ _ idpath).
|
||
}
|
||
assert (resp2 : forall x x' y, set_eq A x x' -> u x y = u x' y).
|
||
{ intros x x' y Hxx'.
|
||
apply Hresp. apply Hxx'.
|
||
reflexivity. }
|
||
unfold View.
|
||
hrecursion.
|
||
- intros a.
|
||
hrecursion.
|
||
+ intros b.
|
||
apply (u a b).
|
||
+ intros b b' Hbb'. simpl.
|
||
by apply resp1.
|
||
- intros a a' Haa'. simpl.
|
||
apply path_forall. red.
|
||
hinduction.
|
||
+ intros b. apply resp2. apply Haa'.
|
||
+ intros; apply HP.
|
||
Defined.
|
||
|
||
Definition well_defined_union (A : Type) (X1 X2 Y1 Y2 : T A) :
|
||
set_eq A X1 Y1 -> set_eq A X2 Y2 -> set_eq A (union X1 X2) (union Y1 Y2).
|
||
Proof.
|
||
intros HXY1 HXY2.
|
||
simplify T.
|
||
by rewrite HXY1, HXY2.
|
||
Defined.
|
||
|
||
Definition well_defined_filter (A : Type) (ϕ : A -> Bool) (X Y : T A) :
|
||
set_eq A X Y -> set_eq A (filter ϕ X) (filter ϕ Y).
|
||
Proof.
|
||
intros HXY.
|
||
simplify T.
|
||
by rewrite HXY.
|
||
Defined.
|
||
|
||
Global Instance View_member A: hasMembership (View A) A.
|
||
Proof.
|
||
intros a ; unfold View.
|
||
hrecursion.
|
||
- apply (member a).
|
||
- intros X Y HXY.
|
||
reduce T.
|
||
rewrite HXY.
|
||
reflexivity.
|
||
Defined.
|
||
|
||
Global Instance View_empty A: hasEmpty (View A).
|
||
Proof.
|
||
apply (class_of _ ∅).
|
||
Defined.
|
||
|
||
Global Instance View_singleton A: hasSingleton (View A) A.
|
||
Proof.
|
||
intros a.
|
||
apply (class_of _ {|a|}).
|
||
Defined.
|
||
|
||
Instance View_max A : maximum (View A).
|
||
Proof.
|
||
simple refine (View_rec2 _ _ _ _).
|
||
- intros a b.
|
||
apply (class_of _ (union a b)).
|
||
- intros x x' Hxx' y y' Hyy' ; simpl.
|
||
apply related_classes_eq.
|
||
eapply well_defined_union; eauto.
|
||
Defined.
|
||
|
||
Global Instance View_union A: hasUnion (View A).
|
||
Proof.
|
||
apply max_L.
|
||
Defined.
|
||
|
||
Global Instance View_comprehension A: hasComprehension (View A) A.
|
||
Proof.
|
||
intros ϕ ; unfold View.
|
||
hrecursion.
|
||
- intros X.
|
||
apply (class_of _ (filter ϕ X)).
|
||
- intros X X' HXX' ; simpl.
|
||
apply related_classes_eq.
|
||
eapply well_defined_filter; eauto.
|
||
Defined.
|
||
|
||
Hint Unfold Commutative Associative Idempotent NeutralL NeutralR.
|
||
|
||
Instance bottom_view A : bottom (View A).
|
||
Proof.
|
||
unfold bottom.
|
||
apply ∅.
|
||
Defined.
|
||
|
||
Global Instance view_lattice A : JoinSemiLattice (View A).
|
||
Proof.
|
||
split ; reflect_eq T.
|
||
Defined.
|
||
|
||
End quotient_properties.
|
||
|
||
Arguments set_eq {_} _ {_} _ _.
|
||
|
||
Section properties.
|
||
Context `{Univalence}.
|
||
Variable (T : Type -> Type) (f : forall A, T A -> FSet A).
|
||
Context `{sets T f}.
|
||
|
||
Definition set_subset : forall A, T A -> T A -> hProp :=
|
||
fun A X Y => (f A X) ⊆ (f A Y).
|
||
|
||
Definition empty_isIn : forall (A : Type) (a : A),
|
||
a ∈ ∅ = False_hp.
|
||
Proof.
|
||
by (reduce T).
|
||
Defined.
|
||
|
||
Definition singleton_isIn : forall (A : Type) (a b : A),
|
||
a ∈ {|b|} = merely (a = b).
|
||
Proof.
|
||
by (reduce T).
|
||
Defined.
|
||
|
||
Definition union_isIn : forall (A : Type) (a : A) (X Y : T A),
|
||
a ∈ (X ∪ Y) = lor (a ∈ X) (a ∈ Y).
|
||
Proof.
|
||
by (reduce T).
|
||
Defined.
|
||
|
||
Definition filter_isIn : forall (A : Type) (a : A) (ϕ : A -> Bool) (X : T A),
|
||
member a (filter ϕ X) = if ϕ a then member a X else False_hp.
|
||
Proof.
|
||
reduce T.
|
||
apply properties.comprehension_isIn.
|
||
Defined.
|
||
|
||
Definition reflect_f_eq : forall (A : Type) (X Y : T A),
|
||
class_of (set_eq f) X = class_of (set_eq f) Y -> set_eq f X Y.
|
||
Proof.
|
||
intros.
|
||
refine (same_class _ _ _ _ _ _) ; assumption.
|
||
Defined.
|
||
|
||
Lemma class_union (A : Type) (X Y : T A) :
|
||
class_of (set_eq f) (X ∪ Y) = (class_of (set_eq f) X) ∪ (class_of (set_eq f) Y).
|
||
Proof.
|
||
reflexivity.
|
||
Defined.
|
||
|
||
Lemma class_filter (A : Type) (X : T A) (ϕ : A -> Bool) :
|
||
class_of (set_eq f) ({|X & ϕ|}) = {|(class_of (set_eq f) X) & ϕ|}.
|
||
Proof.
|
||
reflexivity.
|
||
Defined.
|
||
|
||
Ltac via_quotient := intros ; apply reflect_f_eq
|
||
; rewrite ?class_union, ?class_filter
|
||
; eauto with lattice_hints typeclass_instances.
|
||
|
||
Lemma union_comm : forall A (X Y : T A),
|
||
set_eq f (X ∪ Y) (Y ∪ X).
|
||
Proof.
|
||
via_quotient.
|
||
Defined.
|
||
|
||
Lemma union_assoc : forall A (X Y Z : T A),
|
||
set_eq f ((X ∪ Y) ∪ Z) (X ∪ (Y ∪ Z)).
|
||
Proof.
|
||
via_quotient.
|
||
Defined.
|
||
|
||
Lemma union_idem : forall A (X : T A),
|
||
set_eq f (X ∪ X) X.
|
||
Proof.
|
||
via_quotient.
|
||
Defined.
|
||
|
||
Lemma union_neutral : forall A (X : T A),
|
||
set_eq f (∅ ∪ X) X.
|
||
Proof.
|
||
via_quotient.
|
||
Defined.
|
||
|
||
End properties. |