HITs-Examples/FiniteSets/properties.v

378 lines
9.2 KiB
Coq

Require Import HoTT.
Require Export HoTT.
Require Import definition.
Require Import operations.
Section properties.
Arguments E {_}.
Arguments U {_} _ _.
Arguments L {_} _.
Arguments assoc {_} _ _ _.
Arguments comm {_} _ _.
Arguments nl {_} _.
Arguments nr {_} _.
Arguments idem {_} _.
Arguments isIn {_} _ _.
Arguments comprehension {_} _ _.
Arguments intersection {_} _ _.
Variable A : Type.
Parameter A_eqdec : forall (x y : A), Decidable (x = y).
Definition deceq (x y : A) :=
if dec (x = y) then true else false.
Theorem deceq_sym : forall x y, operations.deceq A x y = operations.deceq A y x.
Proof.
intros x y.
unfold operations.deceq.
destruct (dec (x = y)) ; destruct (dec (y = x)) ; cbn.
- reflexivity.
- pose (n (p^)) ; contradiction.
- pose (n (p^)) ; contradiction.
- reflexivity.
Defined.
Lemma comprehension_false: forall Y: FSet A,
comprehension (fun a => isIn a E) Y = E.
Proof.
simple refine (FSet_ind _ _ _ _ _ _ _ _ _ _ _);
try (intros; apply set_path2).
- cbn. reflexivity.
- cbn. reflexivity.
- intros x y IHa IHb.
cbn.
rewrite IHa.
rewrite IHb.
rewrite nl.
reflexivity.
Defined.
Lemma isIn_singleton_eq (a b: A) : isIn a (L b) = true -> a = b.
Proof. unfold isIn. simpl. unfold operations.deceq.
destruct (dec (a = b)). intro. apply p.
intro X.
contradiction (false_ne_true X).
Defined.
Lemma isIn_empty_false (a: A) : isIn a E = true -> Empty.
Proof.
cbv. intro X.
contradiction (false_ne_true X).
Defined.
Lemma isIn_union (a: A) (X Y: FSet A) :
isIn a (U X Y) = (isIn a X || isIn a Y)%Bool.
Proof. reflexivity. Qed.
Theorem comprehension_or : forall ϕ ψ (x: FSet A),
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x)
(comprehension ψ x).
Proof.
intros ϕ ψ.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
- cbn. symmetry ; apply nl.
- cbn. intros.
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
* apply idem.
* apply nr.
* apply nl.
* apply nl.
- simpl. intros x y P Q.
cbn.
rewrite P.
rewrite Q.
rewrite <- assoc.
rewrite (assoc (comprehension ψ x)).
rewrite (comm (comprehension ψ x) (comprehension ϕ y)).
rewrite <- assoc.
rewrite <- assoc.
reflexivity.
Defined.
Theorem union_idem : forall x: FSet A, U x x = x.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ;
try (intros ; apply set_path2) ; cbn.
- apply nl.
- apply idem.
- intros x y P Q.
rewrite assoc.
rewrite (comm x y).
rewrite <- (assoc y x x).
rewrite P.
rewrite (comm y x).
rewrite <- (assoc x y y).
rewrite Q.
reflexivity.
Defined.
Lemma intersection_0l: forall X: FSet A, intersection E X = E.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ;
try (intros ; apply set_path2).
- reflexivity.
- intro a.
reflexivity.
- unfold intersection.
intros x y P Q.
cbn.
rewrite P.
rewrite Q.
apply nl.
Defined.
Definition intersection_0r (X: FSet A): intersection X E = E := idpath.
Theorem intersection_La : forall (a : A) (X : FSet A),
intersection (L a) X = if isIn a X then L a else E.
Proof.
intro a.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
- reflexivity.
- intro b.
cbn.
rewrite deceq_sym.
unfold operations.deceq.
destruct (dec (a = b)).
* rewrite p ; reflexivity.
* reflexivity.
- unfold intersection.
intros x y P Q.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a x) ; destruct (isIn a y).
* apply idem.
* apply nr.
* apply nl.
* apply nl.
Defined.
Lemma absorb_La (z : FSet A) (a : A) : forall Y : FSet A, intersection (U (L a) z) Y = U (intersection (L a) Y) (intersection z Y).
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2) ; cbn.
- symmetry ; apply nl.
- intros b.
unfold operations.deceq.
destruct (dec (b = a)) ; cbn.
* destruct (isIn b z).
+ rewrite union_idem.
reflexivity.
+ rewrite nr.
reflexivity.
* rewrite nl ; reflexivity.
- intros X1 X2 P Q.
rewrite comprehension_or.
rewrite comprehension_or.
rewrite <- assoc.
rewrite (comm (comprehension (fun a0 : A => isIn a0 z) X1)).
rewrite <- assoc.
rewrite assoc.
rewrite (comm (comprehension (fun a0 : A => isIn a0 z) X2)).
reflexivity.
Defined.
Theorem absorbtion_1 (X1 X2 Y : FSet A) :
intersection (U X1 X2) Y = U (intersection X1 Y) (intersection X2 Y).
Proof.
simple refine (FSet_ind A
(fun z => intersection (U z X2) Y = U (intersection z Y) (intersection X2 Y))
_ _ _ _ _ _ _ _ _ X1) ; try (intros ; apply set_path2) ; cbn.
- rewrite intersection_0l.
rewrite nl.
rewrite nl.
reflexivity.
- intro a.
rewrite intersection_La.
rewrite absorb_La.
rewrite intersection_La.
reflexivity.
- intros Z1 Z2 P Q.
unfold intersection in *.
cbn.
rewrite comprehension_or.
rewrite comprehension_or.
reflexivity.
Defined.
Theorem intersection_isIn : forall a (x y: FSet A),
isIn a (intersection x y) = andb (isIn a x) (isIn a y).
Proof.
intros a x y.
simple refine (FSet_ind A (fun z => isIn a (intersection z y) = andb (isIn a z) (isIn a y)) _ _ _ _ _ _ _ _ _ x) ; try (intros ; apply set_path2) ; cbn.
- rewrite intersection_0l.
reflexivity.
- intro b.
rewrite intersection_La.
unfold operations.deceq.
destruct (dec (a = b)) ; cbn.
* rewrite p.
destruct (isIn b y).
+ cbn.
unfold operations.deceq.
destruct (dec (b = b)).
{ reflexivity. }
{ pose (n idpath). contradiction. }
+ reflexivity.
* destruct (isIn b y).
+ cbn.
unfold operations.deceq.
destruct (dec (a = b)).
{ pose (n p). contradiction. }
{ reflexivity. }
+ reflexivity.
- intros X1 X2 P Q.
rewrite absorbtion_1.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a X1) ; destruct (isIn a X2) ; destruct (isIn a y) ; reflexivity.
Defined.
Lemma intersection_comm (X Y: FSet A): intersection X Y = intersection Y X.
Proof.
(*
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _ X) ;
try (intros; apply set_path2).
- cbn. unfold intersection. apply comprehension_false.
- cbn. unfold intersection. intros a.
hrecursion Y; try (intros; apply set_path2).
+ cbn. reflexivity.
+ cbn. intros.
destruct (dec (a0 = a)).
rewrite p. destruct (dec (a=a)).
reflexivity.
contradiction n.
reflexivity.
destruct (dec (a = a0)).
contradiction n. apply p^. reflexivity.
+ cbn -[isIn]. intros Y1 Y2 IH1 IH2.
rewrite IH1.
rewrite IH2.
apply (comprehension_union (L a)).
- intros X1 X2 IH1 IH2.
cbn.
unfold intersection in *.
rewrite <- IH1.
rewrite <- IH2. symmetry.
apply comprehension_union.
Defined.*)
Admitted.
Lemma comprehension_union (X Y Z: FSet A) :
U (comprehension (fun a => isIn a Y) X)
(comprehension (fun a => isIn a Z) X) =
comprehension (fun a => isIn a (U Y Z)) X.
Proof.
Admitted.
(*
hrecursion X; try (intros; apply set_path2).
- cbn. apply nl.
- cbn. intro a.
destruct (isIn a Y); simpl;
destruct (isIn a Z); simpl.
apply idem.
apply nr.
apply nl.
apply nl.
- cbn. intros X1 X2 IH1 IH2.
rewrite assoc.
rewrite (comm _ (comprehension (fun a : A => isIn a Y) X1)
(comprehension (fun a : A => isIn a Y) X2)).
rewrite <- (assoc _
(comprehension (fun a : A => isIn a Y) X2)
(comprehension (fun a : A => isIn a Y) X1)
(comprehension (fun a : A => isIn a Z) X1)
).
rewrite IH1.
rewrite comm.
rewrite assoc.
rewrite (comm _ (comprehension (fun a : A => isIn a Z) X2) _).
rewrite IH2.
apply comm.
Defined.*)
Theorem intersection_assoc (X Y Z: FSet A) :
intersection X (intersection Y Z) = intersection (intersection X Y) Z.
Proof.
simple refine
(FSet_ind A
(fun z => intersection z (intersection Y Z) = intersection (intersection z Y) Z)
_ _ _ _ _ _ _ _ _ X) ; try (intros ; apply set_path2).
- cbn.
rewrite intersection_0l.
rewrite intersection_0l.
rewrite intersection_0l.
reflexivity.
- intros a.
cbn.
rewrite intersection_La.
rewrite intersection_La.
rewrite intersection_isIn.
destruct (isIn a Y).
* rewrite intersection_La.
destruct (isIn a Z).
+ reflexivity.
+ reflexivity.
* rewrite intersection_0l.
reflexivity.
- unfold intersection. cbn.
intros X1 X2 P Q.
rewrite comprehension_or.
rewrite P.
rewrite Q.
rewrite comprehension_or.
cbn.
rewrite comprehension_or.
reflexivity.
Defined.
Theorem comprehension_subset : forall ϕ (X : FSet A),
U (comprehension ϕ X) X = X.
Proof.
intros ϕ.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2) ; cbn.
- apply nl.
- intro a.
destruct (ϕ a).
* apply union_idem.
* apply nl.
- intros X Y P Q.
rewrite assoc.
rewrite <- (assoc (comprehension ϕ X) (comprehension ϕ Y) X).
rewrite (comm (comprehension ϕ Y) X).
rewrite assoc.
rewrite P.
rewrite <- assoc.
rewrite Q.
reflexivity.
Defined.
Theorem intersection_idem : forall (X : FSet A), intersection X X = X.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2) ; cbn.
- reflexivity.
- intro a.
unfold operations.deceq.
destruct (dec (a = a)).
* reflexivity.
* contradiction (n idpath).
- intros X Y IHX IHY.
cbn in *.
rewrite comprehension_or.
rewrite comprehension_or.
unfold intersection in *.
rewrite IHX.
rewrite IHY.
rewrite comprehension_subset.
rewrite (comm X).
rewrite comprehension_subset.
reflexivity.
Defined.
End properties.