HITs-Examples/FiniteSets/fsets/properties_cons_repr.v

65 lines
1.8 KiB
Coq
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

(* Properties of the operations on [FSetC A] *)
Require Import HoTT HitTactics.
Require Import representations.cons_repr.
From fsets Require Import operations_cons_repr.
Section properties.
Context {A : Type}.
Definition append_nl : forall (x: FSetC A), x = x
:= fun _ => idpath.
Lemma append_nr : forall (x: FSetC A), x = x.
Proof.
hinduction; try (intros; apply set_path2).
- reflexivity.
- intros. apply (ap (fun y => a;;y) X).
Defined.
Lemma append_assoc {H: Funext}:
forall (x y z: FSetC A), x (y z) = (x y) z.
Proof.
hinduction
; try (intros ; apply path_forall ; intro
; apply path_forall ; intro ; apply set_path2).
- reflexivity.
- intros a x HR y z.
specialize (HR y z).
apply (ap (fun y => a;;y) HR).
Defined.
Lemma append_singleton: forall (a: A) (x: FSetC A),
a ;; x = x (a ;; ).
Proof.
intro a. hinduction; try (intros; apply set_path2).
- reflexivity.
- intros b x HR. refine (_ @ _).
+ apply comm.
+ apply (ap (fun y => b ;; y) HR).
Defined.
Lemma append_comm {H: Funext}:
forall (x1 x2: FSetC A), x1 x2 = x2 x1.
Proof.
hinduction ; try (intros ; apply path_forall ; intro ; apply set_path2).
- intros. symmetry. apply append_nr.
- intros a x1 HR x2.
etransitivity.
apply (ap (fun y => a;;y) (HR x2)).
transitivity ((x2 x1) (a;;)).
+ apply append_singleton.
+ etransitivity.
* symmetry. apply append_assoc.
* simple refine (ap (x2 ) (append_singleton _ _)^).
Defined.
Lemma singleton_idem: forall (a: A),
{|a|} {|a|} = {|a|}.
Proof.
unfold singleton.
intro.
apply dupl.
Defined.
End properties.