HITs-Examples/FiniteSets/variations/k_finite.v

122 lines
3.0 KiB
Coq

Require Import HoTT HitTactics.
Require Import lattice representations.definition fsets.operations extensionality Sub fsets.properties.
Section k_finite.
Context (A : Type).
Context `{Univalence}.
Definition map (X : FSet A) : Sub A := fun a => isIn a X.
Instance map_injective : IsEmbedding map.
Proof.
apply isembedding_isinj_hset. (* We use the fact that both [FSet A] and [Sub A] are hSets *)
intros X Y HXY.
apply fset_ext.
apply apD10. exact HXY.
Defined.
Definition Kf_sub_intern (B : Sub A) := exists (X : FSet A), B = map X.
Instance Kf_sub_hprop B : IsHProp (Kf_sub_intern B).
Proof.
apply hprop_allpath.
intros [X PX] [Y PY].
assert (X = Y) as HXY.
{ apply fset_ext. apply apD10.
transitivity B; [ symmetry | ]; assumption. }
apply path_sigma with HXY. simpl.
apply set_path2.
Defined.
Definition Kf_sub (B : Sub A) : hProp := BuildhProp (Kf_sub_intern B).
Definition Kf : hProp := Kf_sub (fun x => True).
Instance: IsHProp {X : FSet A & forall a : A, map X a}.
Proof.
apply hprop_allpath.
intros [X PX] [Y PY].
assert (X = Y) as HXY.
{ apply fset_ext. intros a.
unfold map in *.
apply path_hprop.
apply equiv_iff_hprop; intros.
+ apply PY.
+ apply PX. }
apply path_sigma with HXY. simpl.
apply path_forall. intro.
apply path_ishprop.
Defined.
Lemma Kf_unfold : Kf <~> (exists (X : FSet A), forall (a : A), map X a).
Proof.
apply equiv_equiv_iff_hprop. apply _. apply _.
split.
- intros [X PX]. exists X. intro a.
rewrite <- PX. done.
- intros [X PX]. exists X. apply path_forall; intro a.
apply path_hprop.
symmetry. apply if_hprop_then_equiv_Unit; [ apply _ | ].
apply PX.
Defined.
End k_finite.
Arguments map {_} {_} _.
Section structure_k_finite.
Context (A : Type).
Context `{Univalence}.
Lemma map_union : forall X Y : FSet A, map (U X Y) = max_fun (map X) (map Y).
Proof.
intros.
unfold map, max_fun.
reflexivity.
Defined.
Lemma k_finite_union : hasUnion (Kf_sub A).
Proof.
unfold hasUnion, Kf_sub, Kf_sub_intern.
intros.
destruct X0 as [SX XP].
destruct X1 as [SY YP].
exists (U SX SY).
rewrite map_union.
rewrite XP, YP.
reflexivity.
Defined.
Lemma k_finite_empty : hasEmpty (Kf_sub A).
Proof.
unfold hasEmpty, Kf_sub, Kf_sub_intern, map, empty_sub.
exists E.
reflexivity.
Defined.
Lemma k_finite_singleton : hasSingleton (Kf_sub A).
Proof.
unfold hasSingleton, Kf_sub, Kf_sub_intern, map, singleton.
intro.
exists (L a).
cbn.
apply path_forall.
intro z.
reflexivity.
Defined.
Lemma k_finite_hasDecidableEmpty : hasDecidableEmpty (Kf_sub A).
Proof.
unfold hasDecidableEmpty, hasEmpty, Kf_sub, Kf_sub_intern, map.
intros.
destruct X0 as [SX EX].
rewrite EX.
simple refine (Trunc_ind _ _ (merely_choice SX)).
intros [SXE | H1].
- rewrite SXE.
apply (tr (inl idpath)).
- apply (tr (inr H1)).
Defined.
End structure_k_finite.