HITs-Examples/FiniteSets/properties.v

319 lines
7.2 KiB
Coq

Require Import HoTT HitTactics.
Require Export definition operations Ext Lattice.
(* Lemmas relating operations to the membership predicate *)
Section operations_isIn.
Context {A : Type} `{DecidablePaths A}.
Lemma ext `{Funext} : forall (S T : FSet A), (forall a, isIn a S = isIn a T) -> S = T.
Proof.
apply fset_ext.
Defined.
(* Union and membership *)
Lemma union_isIn (X Y : FSet A) (a : A) :
isIn a (U X Y) = orb (isIn a X) (isIn a Y).
Proof.
reflexivity.
Defined.
(* Intersection and membership. We need a bunch of supporting lemmas *)
Lemma intersection_0l: forall X: FSet A, intersection E X = E.
Proof.
hinduction;
try (intros ; apply set_path2).
- reflexivity.
- intro a.
reflexivity.
- intros x y P Q.
cbn.
rewrite P.
rewrite Q.
apply union_idem.
Defined.
Lemma intersection_0r (X : FSet A) : intersection X E = E.
Proof.
exact idpath.
Defined.
Lemma intersection_La (X : FSet A) (a : A) :
intersection (L a) X = if isIn a X then L a else E.
Proof.
hinduction X; try (intros ; apply set_path2).
- reflexivity.
- intro b.
cbn.
destruct (dec (a = b)) as [p|np].
* rewrite p.
destruct (dec (b = b)) as [|nb]; [reflexivity|].
by contradiction nb.
* destruct (dec (b = a)); [|reflexivity].
by contradiction np.
- unfold intersection.
intros X Y P Q.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a X) ; destruct (isIn a Y).
* apply union_idem.
* apply nr.
* apply nl.
* apply union_idem.
Defined.
Lemma comprehension_or : forall ϕ ψ (x: FSet A),
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x)
(comprehension ψ x).
Proof.
intros ϕ ψ.
hinduction; try (intros; apply set_path2).
- cbn. apply (union_idem _)^.
- cbn. intros.
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
* apply union_idem.
* apply nr.
* apply nl.
* apply union_idem.
- simpl. intros x y P Q.
rewrite P.
rewrite Q.
rewrite <- assoc.
rewrite (assoc (comprehension ψ x)).
rewrite (comm (comprehension ψ x) (comprehension ϕ y)).
rewrite <- assoc.
rewrite <- assoc.
reflexivity.
Defined.
Lemma distributive_La (z : FSet A) (a : A) : forall Y : FSet A,
intersection (U (L a) z) Y = U (intersection (L a) Y) (intersection z Y).
Proof.
hinduction; try (intros ; apply set_path2) ; cbn.
- symmetry ; apply nl.
- intros b.
destruct (dec (b = a)) ; cbn.
* destruct (isIn b z).
+ rewrite union_idem.
reflexivity.
+ rewrite nr.
reflexivity.
* rewrite nl ; reflexivity.
- intros X1 X2 P Q.
rewrite P. rewrite Q.
rewrite <- assoc.
rewrite (comm (comprehension (fun a0 : A => isIn a0 z) X1)).
rewrite <- assoc.
rewrite assoc.
rewrite (comm (comprehension (fun a0 : A => isIn a0 z) X2)).
reflexivity.
Defined.
Lemma distributive_intersection_U (X1 X2 Y : FSet A) :
intersection (U X1 X2) Y = U (intersection X1 Y) (intersection X2 Y).
Proof.
hinduction X1; try (intros ; apply set_path2) ; cbn.
- rewrite intersection_0l.
rewrite nl.
rewrite nl.
reflexivity.
- intro a.
rewrite intersection_La.
rewrite distributive_La.
rewrite intersection_La.
reflexivity.
- intros Z1 Z2 P Q.
unfold intersection in *. simpl in *.
apply comprehension_or.
Defined.
Theorem intersection_isIn (X Y: FSet A) (a : A) :
isIn a (intersection X Y) = andb (isIn a X) (isIn a Y).
Proof.
hinduction X; try (intros ; apply set_path2) ; cbn.
- rewrite intersection_0l.
reflexivity.
- intro b.
rewrite intersection_La.
destruct (dec (a = b)) ; cbn.
* rewrite p.
destruct (isIn b Y).
+ cbn.
destruct (dec (b = b)); [reflexivity|].
by contradiction n.
+ reflexivity.
* destruct (isIn b Y).
+ cbn.
destruct (dec (a = b)); [|reflexivity].
by contradiction n.
+ reflexivity.
- intros X1 X2 P Q.
rewrite distributive_intersection_U. simpl.
rewrite P.
rewrite Q.
destruct (isIn a X1) ; destruct (isIn a X2) ; destruct (isIn a Y) ;
reflexivity.
Defined.
End operations_isIn.
(* Some suporting tactics *)
Ltac simplify_isIn :=
repeat (rewrite ?intersection_isIn ;
rewrite ?union_isIn).
Ltac toBool := try (intro) ;
intros ; apply ext ; intros ; simplify_isIn ; eauto with bool_lattice_hints.
Section SetLattice.
Context {A : Type}.
Context {A_deceq : DecidablePaths A}.
Context `{Funext}.
Instance fset_union_com : Commutative (@U A).
Proof.
toBool.
Defined.
Instance fset_intersection_com : Commutative intersection.
Proof.
toBool.
Defined.
Instance fset_union_assoc : Associative (@U A).
Proof.
toBool.
Defined.
Instance fset_intersection_assoc : Associative intersection.
Proof.
toBool.
Defined.
Instance fset_union_idem : Idempotent (@U A).
Proof. exact union_idem. Defined.
Instance fset_intersection_idem : Idempotent intersection.
Proof.
toBool.
Defined.
Instance fset_union_nl : NeutralL (@U A) (@E A).
Proof.
toBool.
Defined.
Instance fset_union_nr : NeutralR (@U A) (@E A).
Proof.
toBool.
Defined.
Instance fset_absorption_intersection_union : Absorption (@U A) intersection.
Proof.
toBool.
Defined.
Instance fset_absorption_union_intersection : Absorption intersection (@U A).
Proof.
toBool.
Defined.
Instance lattice_fset : Lattice (@U A) intersection (@E A) :=
{
commutative_min := _ ;
commutative_max := _ ;
associative_min := _ ;
associative_max := _ ;
idempotent_min := _ ;
idempotent_max := _ ;
neutralL_min := _ ;
neutralR_min := _ ;
absorption_min_max := _ ;
absorption_max_min := _
}.
End SetLattice.
(* Other properties *)
Section properties.
Context {A : Type}.
Context {A_deceq : DecidablePaths A}.
(** isIn properties *)
Lemma singleton_isIn (a b: A) : isIn a (L b) = true -> a = b.
Proof.
simpl.
destruct (dec (a = b)).
- intro.
apply p.
- intro X.
contradiction (false_ne_true X).
Defined.
Lemma empty_isIn (a: A) : isIn a E = false.
Proof.
reflexivity.
Defined.
(** comprehension properties *)
Lemma comprehension_false Y : comprehension (fun (_ : A) => false) Y = E.
Proof.
hrecursion Y; try (intros; apply set_path2).
- reflexivity.
- reflexivity.
- intros x y IHa IHb.
rewrite IHa.
rewrite IHb.
apply union_idem.
Defined.
Theorem comprehension_subset : forall ϕ (X : FSet A),
U (comprehension ϕ X) X = X.
Proof.
intros ϕ.
hrecursion; try (intros ; apply set_path2) ; cbn.
- apply union_idem.
- intro a.
destruct (ϕ a).
* apply union_idem.
* apply nl.
- intros X Y P Q.
rewrite assoc.
rewrite <- (assoc (comprehension ϕ X) (comprehension ϕ Y) X).
rewrite (comm (comprehension ϕ Y) X).
rewrite assoc.
rewrite P.
rewrite <- assoc.
rewrite Q.
reflexivity.
Defined.
Theorem comprehension_all : forall (X : FSet A),
comprehension (fun a => isIn a X) X = X.
Proof.
hinduction; try (intros ; apply set_path2).
- reflexivity.
- intro a.
destruct (dec (a = a)).
* reflexivity.
* contradiction (n idpath).
- intros X1 X2 P Q.
f_ap; (etransitivity; [ apply comprehension_or |]).
rewrite P. rewrite (comm X1).
apply comprehension_subset.
rewrite Q.
apply comprehension_subset.
Defined.
Theorem distributive_U_int `{Funext} (X1 X2 Y : FSet A) :
U (intersection X1 X2) Y = intersection (U X1 Y) (U X2 Y).
Proof.
toBool.
destruct (a X1), (a X2), (a Y); eauto.
Defined.
End properties.