czf/czf.v

160 lines
3.8 KiB
Coq
Raw Normal View History

2019-01-21 17:31:20 +01:00
From stdpp Require Import base.
From Coq Require Import Logic.PropExtensionality.
(** * Cumulative hierarchy *)
Inductive V : Type :=
sup : forall (A : Set) (f : A -> V), V.
Definition ind (a : V) : Set :=
match a with
| sup A f => A
end.
Definition branch (a : V) : ind a -> V :=
match a with
| sup A f => f
end.
(** * Equality *)
Fixpoint set_eq (a : V) (b : V) : Prop :=
match (a, b) with
(sup A f, sup B g) =>
(forall (x:A), exists (y: B), (set_eq (f x) (g y)))
/\ (forall (y:B), exists (x: A), (set_eq (f x) (g y)))
end.
Instance equiv_V : Equiv V := set_eq.
Lemma eq1 : forall x, x x.
Proof.
intros. induction x.
split; intros; [exists x | exists y]; apply H.
Qed.
Lemma eq2 : forall x y, x y -> y x.
Proof.
intro x. induction x as [A f IHx].
intro y. destruct y as [B g].
intros [F1 F2].
split; intros.
(* Case 1 *)
destruct (F2 x) as [x0 ?].
exists x0. apply (IHx x0 (g x)). assumption.
(* Case 2 *)
destruct (F1 y) as [y0 ?].
exists y0. apply (IHx y (g y0)). assumption.
Qed.
Lemma eq3 : forall x y z, xy -> yz -> xz.
Proof.
intro. induction x as [A f X].
intro. destruct y as [B g].
intro. destruct z as [C h].
intros [P0 P1] [Q0 Q1].
split; intro.
- (* Case 1 *)
destruct (P0 x) as [y L0].
destruct (Q0 y) as [z L1].
exists z. apply (X x (g y) (h z)); assumption.
- (* Case 2 *)
destruct (Q1 y) as [y0 L0].
destruct (P1 y0) as [z L1].
exists z. apply (X z (g y0) (h y)); assumption.
Qed.
Instance set_eq_refl : Reflexive equiv_V := eq1.
Instance set_eq_sym : Symmetric equiv_V := eq2.
Instance set_eq_trans : Transitive equiv_V := eq3.
Instance set_eq_equivalence : Equivalence equiv_V.
Proof. split; apply _. Qed.
Lemma set_eq_unfold a b :
(a b) =
((forall (x:ind a), exists (y: ind b), ((branch a x) (branch b y)))
/\ (forall (y:ind b), exists (x: ind a), ((branch a x) (branch b y)))).
Proof.
destruct a, b; reflexivity.
Qed.
(** * Membership *)
Lemma test1 (a b c : V) :
a b
b c
a c.
Proof.
intros ? H2.
rewrite <-H2.
apply H.
Qed.
Lemma test2 (a b c : V) :
equiv_V a b
equiv_V b c
equiv_V a c.
Proof.
intros ? H2.
Fail rewrite <-H2.
Abort.
Instance elem_of_V : ElemOf V V := λ (a b : V),
exists (y : ind b), a (branch b y).
Instance elem_of_V_proper : Proper (() ==> () ==> (=)) elem_of_V.
Proof. Admitted.
(* Instance elem_of_V_proper : Proper ((=) ==> () ==> (impl)) elem_of_V. *)
(* Proof. *)
(* intros a a' Ha b b' Hb. *)
(* apply propositional_extensionality. split. *)
(* rewrite <-Ha. *)
(* { intros [y Hy]. *)
(* destruct b as [B g]. *)
(* destruct b' as [B' g']. *)
(* simpl in *. *)
(* destruct Hb as [i1 i2]. *)
(* destruct (i1 y) as [y' Hy']. *)
(* exists y'. simpl. unfold equiv. admit. } *)
(* { intros [y' Hy']. *)
(* destruct b as [B g]. *)
(* destruct b' as [B' g']. *)
(* simpl in *. *)
(* destruct Hb as [i1 i2]. *)
(* destruct (i2 y') as [y Hy]. *)
(* exists y. simpl. symmetry. *)
(* unfold equiv. *)
(* admit. } *)
(* Admitted. *)
Instance Acc_elem_of_proper : Proper (() ==> (impl)) (Acc elem_of_V).
Proof.
intros a a' Ha.
intros acc.
revert a' Ha.
induction acc as [a acc IH].
intros a' Ha.
rewrite set_eq_unfold in Ha.
destruct Ha as [i1 i2].
constructor. intros x' [y' Hx'].
eapply IH. 2:{ reflexivity. }
(* TODO: does not work *)
(* rewrite Hx'. *)
erewrite (elem_of_V_proper x' (branch a' y')); eauto.
destruct (i2 y') as [y Hy].
exists y. symmetry. apply Hy.
Qed.
(** The cumulative hierarchy is well-founded *)
Lemma V_wf : well_founded elem_of_V.
Proof.
unfold well_founded.
induction a as [A f IH].
constructor. intros y [a Hy]. cbn in Hy.
rewrite Hy.
apply IH.
Qed.
(** * Set formers *)
Instance empty_V : Empty V :=
sup Empty_set (Empty_set_rect _).