stronger collection

This commit is contained in:
Dan Frumin 2019-01-22 13:51:22 +01:00
parent c9f427f737
commit 0578569c09
1 changed files with 16 additions and 0 deletions

16
czf.v
View File

@ -311,3 +311,19 @@ Proof.
2: { rewrite Hx. apply (proj2_sig Hϕ'). }
exists x. cbn. reflexivity.
Qed.
Theorem CZF_collection_stong (a : V) (ϕ : V V Prop)
`{Proper _ (() ==> () ==> (impl)) ϕ} :
(forall (x : V), x a { y | ϕ x y })
exists (b : V), (forall (y : V), y b exists x, x a ϕ x y ).
Proof.
intros .
exists (coll a ϕ ). intros yy Hyy.
destruct a as [A f].
destruct Hyy as [y Hy]. simpl in *.
exists (f y). split.
{ exists y. reflexivity. }
rewrite Hy.
set (Hϕ':= (f y) (ex_intro (λ z, f y f z) y (reflexivity _))).
apply (proj2_sig Hϕ').
Qed.